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Abstract

We aim to give a pedagogical introduction to those elementary aspects of superconductivity
which are not treated in the classic textbooks. In particular, we emphasize that global U (1)
phase rotation symmetry, and not gauge symmetry, is spontaneously violated, and show that
the BCS wave function is, contrary to claims in the literature, fully gauge invariant. We discuss
the nature of the order parameter, the physical origin of the many degenerate states, and the
relation between formulations of superconductivity with fixed particle numbers vs. well-de-
fined phases. We motivate and to some extend derive the effective field theory at low temper-
atures, explore symmetries and conservation laws, and justify the classical nature of the
theory. Most importantly, we show that the entire phenomenology of superconductivity essen-
tially follows from the single assumption of a charged order parameter field. This phenome-
nology includes Anderson�s characteristic equations of superfluidity, electric and magnetic
screening, the Bernoulli Hall effect, the balance of the Lorentz force, as well as the quantum
effects, in which Planck�s constant manifests itself through the compactness of the U (1) phase
field. The latter effects include flux quantization, phase slippage, and the Josephson effect.
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1. Introduction

Many years ago, Steven Weinberg mentioned to me that he was disconcerted that
none of the classic textbooks on superconductivity would explain the phenomenon in
terms of the Higgs mechanism [1] for the electromagnetic gauge field. This concern is
of course very well justified, and it was most likely with this concern in mind that
Weinberg has included a section on superconductivity in his treatment of spontane-
ous symmetry breaking and the Higgs mechanism in his series of volumes entitled
The quantum theory of fields [2]. When I was asked recently to present a series of lec-
tures on superconductivity, I opened his book expecting to find a particularly lucid
exposition of this in condensed matter physics rarely emphasized perspective. I found
the exposition I was looking for, but to my surprise, build around the following
statement: A superconductor is simply a material in which electromagnetic gauge
invariance is spontaneously broken. What Weinberg means with this statement is just
that the electromagnetic gauge field ‘‘acquires a mass’’ due to the Higgs mechanism
in a superconductor, as particle physicists often speak of spontaneously broken
gauge invariance interchangeably with the Higgs mechanism.

Nonetheless, I am not perfectly at ease with the above statement, which is, by the
way, by no means specific to Weinberg�s exposition, but widely believed and ac-
cepted. While it is obvious that Weinberg fully understands the matter, the statement
may still be misleading to a young student who is learning the subject for the first
time. The problem is that the statement is, if one takes it literally, not correct: gauge
invariance cannot spontaneously break down as a matter of principle, and in partic-
ular is not broken in a superconductor, as I will explain in the following section.

This paper is organized as follows. In Section 2, we discuss the statement quoted
above including the danger which may result from a literal interpretation of it in
depth. In particular, we show that the BCS ground state is, in contrast to statements
made in the literature, fully gauge invariant. The crucial ingredient often omitted is
that gauge transformations involve, in addition to the standard transformation of
gauge fields, local phase rotations of both creation (and annihilation) operators
and wave functions. In Section 3, we discuss the nature of the order parameter in
superconductors, with particular emphasis on finite systems, which always possess
a unique ground state. The arising subtlety is explained by drawing an analogy to
quantum antiferromagnets, which also possess a unique and rotationally invariant
ground state for finite systems. In Section 4, we motivate and elaborate the effective
field theory of a superconductor at low temperatures, which contains the theory of a
neutral superfluid as the special case where the charge is set to zero. In particular, we
obtain the particle density and current as well as the energy and momentum density
from the physical symmetries of the theory, invariance under global U (1) phase rota-
tions of the order parameter and invariance under translations in time and space.
The quest for a consistent definition of the superfluid velocity yields a relation be-
tween current and momentum densities in the superfluid, which in turn requires cor-
rections to the effective Lagrangian. Since the density of the superfluid is essentially
the ‘‘momentum conjugate’’ of the order parameter phase, Hamilton�s equations
yield physical information not contained in the Euler–Lagrange equations; specifi-
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cally, we obtain a gauge invariant generalization of Anderson�s characteristic equa-
tions of superfluidity to the case of superconductors. We conclude this section with a
brief justification of the classical nature of the effective field theory. In Section 5, we
discuss the phenomenology of superconductors as compared to neutral superfluids,
or, in general terms, the Higgs mechanism. To begin with, we briefly address the phe-
nomenology of neutral superfluids including vortex quantization, and give a general
introduction to the Higgs mechanism in field theories. We then turn to the phenom-
enology of simply connected superconductors, solve the equations of motion, obtain
electric and magnetic screening, London�s equation, the Bernoulli Hall effect, and the
balance of the Lorentz force. We demonstrate that the Higgs mechanism never cor-
responds to a spontaneous violation of a gauge symmetry, and that it is incorrect to
interpret it in terms of ‘‘a mass acquired by the electromagnetic gauge field,’’ as the
massive field is no longer a gauge field. Specifically, we show that the massive vector
field, which may alternatively be used to describe a (simply connected) superconduc-
tor, is correctly interpreted as a four-vector formed by the chemical potential and the
three components of the superfluid velocity. We conclude this section with a discus-
sion of the subtle difference between the physical invariance of the theory under glo-
bal U (1) rotations of the order parameter phase and gauge invariance, which is
nothing but a local invariance of our description of the system. In the last section,
we review a family of ‘‘quantum effects’’: the quantization of magnetic flux in super-
conductors, phase slippage, and the Josephson effect in both neutral superfluids and
superconductors. In these effects, Planck�s constant manifests itself in the phenome-
nology through the compactness of the order parameter phase field; these effects re-
quire either a non-trivial topology or more than one superfluid. We derive them from
the effective field theory introduced in Section 4, and thereby demonstrate that the
very few assumptions made in motivating the effective theory are sufficient to ac-
count for them.
2. Gauge invariance

To illustrate how dangerous the statement quoted in the introduction is in the case
of superconductivity, where we do not only have a description in terms of an effective
field theory but also a microscopic description in terms of model Hamiltonians and
trial wave functions, I will at first assume the statement was true and take it literally.
I will pretend to be a student who has just learned that electromagnetic gauge invari-
ance is spontaneously violated in a superconductor. Well, what does this mean? A
spontaneously broken symmetry means that the Hamiltonian of a given system in
the thermodynamic limit is invariant under a given symmetry transformation (i.e.,
commutes with the generator(s) of this symmetry) while the ground state is not
invariant. There are many ground states, which transform into each other under
the symmetry transformations. A classic example is ferromagnetism: The Hamilto-
nian is rotationally invariant, while any particular ground state, specified by the
direction the magnetization vector points to, is not. So if gauge invariance is broken
in a superconductor, this must mean that the ground state of the superconductor
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does not share the gauge invariance of the Hamiltonian. Indeed, a glance at the BCS
wave function [3–6]

jw/i ¼
Y
k

ðuk þ vkei/c
y
k"c

y
�k#Þj0i; ð1Þ

where the coefficients uk and vk are chosen real and / is an arbitrary phase, appears
to confirm this picture. There are many different ground state wave functions, la-
beled by /, which transform into each other under an electromagnetic gauge trans-
formation given by

cykr ! ei
e
�hcKcykr; ð2Þ

which is tantamount to taking

/ ! /þ 2e
�hc

K:

For simplicity, we have chosen K independent of spacetime. The electron charge
throughout this article is �e.

Next, I the student ask myself whether these many BCS wave functions for dif-
ferent parameters / correspond to physically different states. I know that gauge
transformations are not physical transformations: gauge invariance is an invariance
of a description of a system, while other symmetries correspond to invariances un-
der physical transformations, like rotations or translations, which affect the phys-
ical state in question. For example, if the Hamiltonian for given system (like a
ferromagnet) is invariant under rotations in space, this implies that if we rotate
a given eigenstate, we will obtain another eigenstate. Depending on whether the
original state is rotationally invariant or not, it will transform into itself or into
a physically different state. A gauge transformation, by contrast, will only trans-
form our description of a system from one gauge to another, without ever having
any effect on the physical state of the system. Gauge transformations are compa-
rable to rotations or translations of the coordinate system we use to describe a sys-
tem. Another way of seeing the difference is by noting that it is possible to rotate
or translate a superconductor in the laboratory, but as a matter of principle not
possible to gauge transform it. Returning to the superconductor, I the student con-
clude that if the many different ground states only differ by a gauge transforma-
tion, they cannot be physically different. The ground state of a superconductor
must hence be physically unique.

In fact, there is another way of looking at the problem which appears to confirm
this conclusion. A BCS superconductor can not only be described in the grand-ca-
nonical ensemble, where the chemical potential rather than the number of particles
is fixed, but also in the canonical ensemble, where the number of particles or pairs is
fixed. Following Anderson [7], we can project out a (not normalized) state with N

pairs from (1) via

jwN i ¼
Z 2p

d/e�iN/jw/i ð3Þ

0



M. Greiter / Annals of Physics 319 (2005) 217–249 221
and obtain (see Appendix A)

jwN i ¼
Z

d3x1 � � � d3x2Nuðx1 � x2Þ � � �uðx2N�1 � x2N Þ

� wy
"ðx1Þwy

#ðx2Þ � � �wy
"ðx2N�1Þwy

#ðx2N Þj0i; ð4Þ

where the real-space creation operator fields wy
rðxÞ are simply the Fourier trans-

forms of the momentum-space creation operators cykr,

wy
rðxÞ ¼

1ffiffiffiffi
V

p
X
k

e�ikxcykr; cykr ¼
1ffiffiffiffi
V

p
Z

d3xeikxwy
rðxÞ: ð5Þ

The wave function for each of the individual pairs, which only depends on the rela-
tive coordinate, is (up to a normalization) given by

uðxÞ ¼ 1

V

X
k

vk
uk

eikx: ð6Þ

This form nicely illustrates that all the pairs have condensed into the same state,
which is the essence of superfluidity. As u (x) is uniquely determined for a given
Hamiltonian, the ground state (4) of a superconductor once more appears to be un-
ique and non-degenerate.

So far the students train of thought. The conclusion reached is of course com-
pletely wrong: a superfluid, and in particular a superconductor, is characterized by
a spontaneously broken symmetry, and, at least in the thermodynamic limit, there
are many degenerate ground states. There are several mistakes in the students anal-
ysis. The first is his literal interpretation of the statement quoted in Section 1. In fact,
a gauge symmetry cannot spontaneously break down as a matter of principle, since it is
not a physical symmetry of the system to begin with, but merely an invariance of

description [8]. The only way to violate a gauge symmetry is by choosing a gauge,
which again has only an effect on our description, but not on the physical system it-
self.

In particular, the BCS ground state does not violate gauge invariance, even
though statements to the contrary have been made in the literature. The apparent
contradiction with (1) and (2) can be resolved by recalling that a gauge transfor-
mation only affects our description of the system, and is analogous to a rotation
of the coordinate system we use in the example of a ferromagnet: if we rotate
the coordinate system accordingly, a ground state with the magnetization vector
pointing in the z-direction in the original coordinate system will ‘‘transform’’ into
a state with the magnetization vector pointing in the x-direction in the new coor-
dinate system, while the physical state has not been affected at all. So while the
BCS wave function may look different in a different gauge, the state itself will re-
main the same.

It is worthwhile to rephrase this statement in equations. To begin with, let us con-
sider a (relativistic quantum) field theory. Electromagnetic gauge invariance is the
invariance of a given theory under U (1) rotations of the complex scalar fields which
carry the charge:
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wyðxÞ ! ei
e
�hcKðxÞwyðxÞ; wðxÞ ! e�i e�hcKðxÞwðxÞ; ð7Þ

where x denotes spacetime. We use the conventions (xl) = (x0,x1,x2,x3) = (ct,x,
y,z), xl = glmx

m, 1 = g00 = �g11 = �g22 = �g33. If the theory contains gradient terms
in these fields (as it usually does), gauge invariance demands that they are minimally
coupled to a U (1) gauge field, i.e., the gradient terms must enter the Lagrangian
as

ol þ i
e
�hc

AlðxÞ
� �

wyðxÞ or ol � i
e
�hc

AlðxÞ
� �

wðxÞ;

where ðolÞ � ðo=oxlÞ ¼ ð1c ot;rÞ. The gauge field (Al) = (U,�A) must transform
according to

AlðxÞ ! AlðxÞ � olKðxÞ: ð8Þ
The statement that the theory is gauge invariant simply means that the Lagrangian is
invariant under the combined transformation (7) and (8). It is not a physical invariance,
but an invariance of description, as it only amounts to a reparametrization of fields.

The concept of gauge invariance is implemented in a very similar way in non-rel-
ativistic quantum mechanics, where the gauge field A is no longer considered a
dynamical variable, but an externally applied vector potential, and we usually do
not describe a system by a Lagrange density, but by a Hamiltonian operator and
its eigenstates. For pedagogical reasons, let us first assume a formulation in second
quantization. Electromagnetic gauge invariance means once again that the descrip-
tion is invariant under U (1) rotations of the particle creation and annihilation oper-
ator fields [9],

wy
rðxÞ ! ei

e
�hcKðxÞwy

rðxÞ; wrðxÞ ! e�i e�hcKðxÞwrðxÞ: ð9Þ
The kinetic part of the Hamiltonian will again contain gradient terms in the operator
fields, which once again must be minimally coupled to the electromagnetic gauge
field. For example, the standard kinetic Hamiltonian for a quadratic dispersion

Hkin ¼
1

2m

X
r

Z
d3xwy

rðxÞ �i�hrþ i
e
�h
AðxÞ

� �2
wrðxÞ ð10Þ

is obviously invariant under (9) provided we transform the gauge field simulta-
neously according to

AðxÞ ! AðxÞ þ rKðxÞ: ð11Þ
Let us now turn to the gauge transformation properties of the eigenstates. Consider a
general N electron eigenstate

jui ¼
X
r1���rN

Z
d3x1 � � � d3xNuðx1 � � � xN ; r1 � � � rN Þ � wy

r1
ðx1Þ � � �wy

rN
ðxN Þj0i: ð12Þ

The state is invariant under (9) provided we transform the wave function according to

uðx1 � � � xN ; r1 � � � rN Þ !
YN
j¼1

e�i e�hcKðxjÞuðx1 � � � xN ; r1 � � � rN Þ: ð13Þ
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This already illustrates the statement phrased in words above: a gauge transformation
leaves physical states invariant. This is just not obvious in every formulation. If we for-
mulate a problem in non-relativistic quantummechanics in first quantization, a gauge
transformationwill only amount to (11) and (13), aswe do not even introduce the oper-
ator fields w� andw. AsA (x) implements an externally appliedmagnetic field, we must
choose a gauge in order to obtain explicit expressions for the Hamiltonian and the
eigenstates. The vector potential and the wave functions will have different functional
forms in different gauges. The gauge rotations (9) of the particle creation and annihila-
tion operators, by contrast, only amount to a local change of variables; we could write

wy
rðxÞ ! wy0

r ðxÞ ¼ ei
e
�hcKðxÞwy

rðxÞ;

wrðxÞ ! w0
rðxÞ ¼ e�i e�hcKðxÞwrðxÞ;

and then simply omit the primes. This part of the gauge transformation is often
omitted as a choice of convention.

In the case of a BCS superconductor, such a convention would be all but propi-
tious, as it would suggest that the ground state is not gauge invariant. The apparent
contradiction in the students train of thought is immediately resolved as one uses the
full and correct prescription for a gauge transformation,

cykr ! ei
e
�hcKcykr; / ! /� 2e

�hc
K; ð14Þ

where the transformation of the phase / is the equivalent of (13) above. Then the
BCS ground stateY

k

ðuk þ vkei/c
y
k"c

y
�k#Þj0i;

is evidently gauge invariant; it is merely the label / in |w/æ which will be adjusted
under a gauge transformation. The transformation / ! /� 2e

�hcK is also required
for the classical (or Ginzburg–Landau) order parameter field W* (x), which is given
by the expectation value of the operator field

Ŵ
yðxÞ � wy

"ðxÞw
y
#ðxÞ; ð15Þ

to have the correct gauge transformation properties. The order parameter for the
BCS ground state,

W�ðxÞ ¼ hw/jw
y
"ðxÞw

y
#ðxÞjw/i ¼

1

V

X
k

v�ku
�
ke

�i/; ð16Þ

transforms as a field of charge �2e under (14):

W�ðxÞ ! ei
2e
�hcKðxÞW�ðxÞ: ð17Þ

This is the physically correct prescription. When we couple W* (x) minimally to the
electromagnetic gauge field, as required by (17), we obtain the correct effective field
theory description of superconductivity. This theory displays the Higgs mechanism
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and yields London�s equation. (By contrast, if we were to adhere to (2), W* (x) would
be invariant, could not be coupled to the electromagnetic gauge field, and no sensible
effective field theory could be formulated.)
3. Order parameter considerations

Before proceeding further with the Higgs mechanism, I would like to return to the
students train of thought and explain what is wrong with the conclusion he draws
from the BCS wave function in position space. The problem here is that while the
ground state is indeed unique for a finite system, there are many degenerate states
in the thermodynamic limit, which correspond to different numbers of particles.
To understand this issue in depth, it is best to first recall how rotational symmetry
is spontaneously violated in ferromagnets and antiferromagnets. As a minimal mod-
el, we consider a three-dimensional cubic lattice of spins with spin quantum number
S and assume the Heisenberg Hamiltonian [10]

HJ ¼ J
X
hi;ji

SiSj; ð18Þ

where the sum extends over all nearest-neighbor bonds Æi, jæ and J < 0 (J > 0) for a
ferromagnet (an antiferromagnet).

In the case of a ferromagnet, the order parameter is given by the total spin operator

Stot �
X
i

Si; ð19Þ

where the sum extends over all lattice sites. It commutes with the Hamiltonian,

½HJ ;Stot� ¼ 0; ð20Þ
and it is hence possible to choose simultaneous eigenstates of the Hamiltonian and
the order parameter. In other words, the degenerate eigenstates of the order param-
eter corresponding to all possible directions the magnetization vector

M ¼ hStoti
can point to, are simultaneously degenerate eigenstates of the Hamiltonian. (For a
ferromagnet with N spins, all the spins align and the ground states are just the states
with maximal total spin Stot = NS.) The ground state of the Hamiltonian is vastly
(i.e., 2 Stot + 1 fold) degenerate even if the system is finite.

The situation is different in the case of the antiferromagnet. The order parameter
is given by the Néel vector, which in operator form is given by

N̂ �
X
i2A

Si �
X
j2B

Sj; ð21Þ

where A and B denote the two sublattices of the (bipartite) cubic lattice. It does not
commute with the Hamiltonian:

½HJ ; N̂ � 6¼ 0:
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This implies that we cannot choose simultaneous eigenstates for the Hamiltonian
and the order parameter. In fact, a theorem due to Marshall [11] states that the
ground state for N even is unique and a spin singlet, or in other words, rotationally
invariant. (It is possible to choose simultaneous eigenstates of HJ and Stot as (20)
holds independently of the sign of J.) The classical Néel order parameter,

N ¼ hN̂i
will vanish for any finite system. This is not to say that there is no order for a finite
system; it just manifests itself only through long-range correlations in the staggered
spin–spin correlation function:

hSiSji ! �const: as i� j ! 1;

where the + sign applies for sites i and j on the same sublattice, the � sign for i and j
on different sublattices, and i � jfi 1 is understood to denote a very large separa-
tion within (the finite volume of) the system. As we approach the thermodynamic
limit, the difference in energy between the lowest singlet and lowest eigenstates for
Stot = 1,2,3,. . . vanishes, and the ground state becomes degenerate (see Fig. 1A).
These degenerate states can now be classified by the directions of the Néel vector
N, and the spontaneous breakdown of rotation symmetry is evident.

The situation in superconductors is analogous to the antiferromagnet: The (oper-
ator valued) order parameter (15) does not commute with the BCS Hamiltonian for
any finite system even if we work in the grand-canonical ensemble, and the ground
state for any finite volume will have a well defined particle number. The difference in
energy between a system with N or N ± 1 or N ± 2, etc. pairs, however, will vanish in
the thermodynamic limit (see Fig. 1B), and the many degenerate ground states can
be classified by the phase / of the (classical) order parameter

W�ðxÞ ¼ hŴyðxÞi ¼ jW�ðxÞje�i/ðxÞ: ð22Þ
The broken symmetry is of course also present in a system with a fixed number of
particles, but like in the case of the antiferromagnet, only as a long-range correlation
of the (operator valued) order parameter field:
Fig. 1. In antiferromagnets (A) and superconductors (B), the ground state is unique for finite systems but
degenerate in the thermodynamic limit.
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hŴyðxÞŴðyÞi ! const: as jx� yj ! 1; ð23Þ
where ŴðxÞ � w#ðxÞw"ðxÞ is simply the hermitian conjugate of Ŵ

yðxÞ. This correla-
tion is referred to as off diagonal long-range order (ODLRO) [12]. This type of order
is characteristic to all superfluids, whether charged (like a superconductor) or neutral
(like liquid helium), whether fermionic (like a superconductor or 3He) or bosonic
(like 4He). For a bosonic superfluid, the (operator valued) order parameter Ŵ

yðxÞ
and its hermitian conjugate ŴðxÞ no longer create or annihilate a pair of fermions,
but simply create or annihilate a single boson (like a 4He atom).

The ODLRO is already evident from the position space wave function (4): Since
all the pairs have condensed into the same quantum state, which is translationally
invariant as it does not depend on the center-of-mass coordinates of the pairs, we
expect to obtain a finite overlap with the original ground state if we rather clumsily
(i.e., via ŴðyÞ) remove a pair of particles at some location y and equally clumsily (i.e.,
via Ŵ

yðxÞ) recreate it at a distant location x. In a superfluid or superconductor with a
fixed number of particles, the phase / will align over the entire system, like the direc-
tion of the staggered magnetization or Néel vector will align in an antiferromagnet.

To illustrate the significance of the phase once more, let us consider a large (but
finite) superconductor A, and describe it as a combination of two superconductors B
and C:

If we label the ground states of each superconductor by its phase, we can obvi-
ously write

jwA
/ i ¼ jwB

/i � jwC
/i

as the phase / of the order parameter will align over the entire system. If we now
transform to a description in terms of fixed numbers of pairs Na for each supercon-
ductor,

jwa
N i ¼

Z 2p

0

d/e�iNa/jwa
/i;

where a can be A, B, or C, the ground state of A is no longer a direct product of the
ground states of B and C:

jwA
NA
i 6¼ jwB

NB
i � jwC

NA�NB
i;

no matter how we choose NB, as the phases no longer align. So while it is possible to
describe a superconductor in a canonical ensemble (i.e., with fixed particle number),
it is highly awkward to do so. It is comparable to a description of an antiferromag-
net with long-range Néel order in terms of an overall singlet ground state of the
system.
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The most significant difference between an antiferromagnet and a superfluid or
superconductor with regard to the order parameter is that the broken rotational
symmetry in the former case is much more evident to us, as all the macroscopic ob-
jects in our daily life experience violate rotational symmetry at one level or another.
In particular, the structure of the material in which antiferromagnetic order occurs
provides us already with a reference frame for the direction the Néel order parameter
may point to. In the case of the superconductor, we need a second superconductor to
have a reference direction for the phase, and an interaction between the order param-
eter in both superconductors to detect a relative difference in the phases. (In practice,
such an interaction may be accomplished by a pair tunneling or so-called Josephson
junction.) The interference experiments will of course only be sensitive to the relative
phase, and not the absolute phase in any of the superconductors, as all phases can, as
a matter of principle, only be specified relative to some reference phase. In principle,
the same is true for rotational invariance, but in this case the fixed stars provide us
with a reference frame we perceive as ‘‘absolute.’’

We may conclude at this point that in a superfluid or superconductor, a symmetry
is spontaneously violated, but this symmetry is not gauge invariance, but global U (1)
phase rotation symmetry. This is already evident from the fact that the discussion
above made no reference to whether the order parameter field Ŵ

yðxÞ is charged or
not, and equally well applies to neutral superfluids, where Ŵ

yðxÞ carries no charge.
There is, however, a very important difference between these two cases. If the or-

der parameter field is neutral, the excitation spectrum of the system contains a gap-
less (or in the language of particle physics ‘‘massless’’) mode, a so-called Goldstone
boson [1], which physically corresponds to very slow spatial variations in the direc-
tion (as for the case of broken rotational invariance) or phase (as for the case of a
superfluid) of the classical order parameter field. If the order parameter field is
charged, however, it couples to the electromagnetic gauge field, and the Goldstone
boson is absent due to the Higgs mechanism. The physical principle underlying this
mechanism was discovered by Anderson [13] in the context of superconductivity: as
the electromagnetic interaction is long-ranged, the mode corresponding to very slow
spatial variations in the phase / of the superconducting order parameter, which im-
plies currents by the equation of motion and hence also variations in the density of
the superfluid by the continuity equation, acquires a gap (or ‘‘mass’’) given by the
plasma frequency.
4. Effective field theory

Most of the phenomenology of superfluidity or superconductivity can be derived
from a simple effective field theory, which in the latter case displays the Higgs mech-
anism. It is probably best to turn directly to the low-energy effective Lagrangian for
the superconductor, as it contains the superfluid as the special case where the cou-
pling e* of the order parameter to the electromagnetic gauge field is set to zero.
To motivate the Lagrangian, recall first the Ginzburg–Landau [14] expansion of
the free energy density in terms of the order parameter (which is now normalized dif-
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ferently from (16) above) in the vicinity of the critical temperature Tc, where the
transition between normal and superconducting phases occurs:

f ðT ;WÞ ¼ 1

2m� �i�hrþ e�

c
AðxÞ

� �
WðxÞ

����
����
2

þ aðT ÞjWðxÞj2 þ 1

2
bðT ÞjWðxÞj4 þ 1

8p
BðxÞ2;

ð24Þ

where m* and �e* = �2e are the effective mass and charge of the electron pairs,
respectively, and B = $ · A is the magnetic field. The material parameter a (T)
changes sign to become negative as we pass through the transition from above,
while b(T) has to remain positive. Minimizing the free energy in the superconduc-
ting phase yields that: (i) the gradient term must vanish, (ii) |W (x)|2 = �a/b, and
(iii) B = 0. This means that the amplitude W0 of the order parameter W (x) =
W0e

i/ has to be fixed while the phase /, which labels the many degenerate ground
state configurations, can be arbitrary as long as the variation over the sample is
given by

r/ ¼ � e�

�hc
A;

which implies /(x) = const. if we choose the gauge A (x) = 0. In the vicinity of the
transition, we may treat W as a small parameter, which implies that the expansion
(24) provides us with a complete description of the system at the level of thermody-
namics.

The Ginzburg–Landau expansion is also helpful in motivating the low energy
effective Lagrange density at low temperatures. To begin with, we may assume that
since the amplitude fluctuations are massive, they do not enter in the low energy
description. Taking |W (x)| to be constant, the free energy density above reduces to
a constant, an electromagnetic field contribution, and

fmag ¼
ns
2m� �hr/ðxÞ þ e�

c
AðxÞ

� �2

; ð25Þ

where ns = |W0|
2 is a phenomenological parameter which depends on the material

and the temperature. It has the dimension of a density and is equal to the density
of the superfluid in the absence of currents and inhomogeneities at T = 0, as we shall
see below. It is usually referred to as the superfluid density, but it would be more
appropriate to use the superfluid stiffness ns/m* as a parameter instead [7]. We will
also see below that Galilean invariance of the superfluid implies that m* is the bare
mass of the superfluid particles, i.e., m* = 2me for Cooper pairs [15].

We take (25) to be part of the potential energy in the effective Lagrange density
for the superfluid. The remaining contribution arises from the coupling of the charge
of the superfluid to the electrostatic potential U (x), which is in leading order given by

fel ¼ �nse�UðxÞ:
This term is usually not included in the free energy of the superconductor, as it is
always canceled off by another such term with opposite sign arising from the uniform
positive background charge. It is essential to our effective field theory here, however,
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as it is part of the Lagrange density for the superfluid, while the uniform background
charge is accounted for by another Lagrange density

LbðxÞ ¼ �nse�UðxÞ; ð26Þ
where x = (ct,x) denotes spacetime. Note that fel is not invariant under (time depen-
dent) gauge transformations

/ðxÞ ! /ðxÞ � e�

�hc
KðxÞ;

UðxÞ ! UðxÞ � 1

c
otKðxÞ;

AðxÞ ! AðxÞ þ rKðxÞ:

ð27Þ

We now turn to the kinetic energy term in the effective Lagrange density. The sim-
plest gauge invariant Lagrange density containing both potential energy terms above
is given by [16]

LsðxÞ ¼ �nsð�hot/ðxÞ � e�UðxÞÞ � ns
2m� �hr/ðxÞ þ e�

c
AðxÞ

� �2

: ð28Þ

This Lagrange density, however, cannot be complete. The only term containing a
time derivative, ot/ (x), appears as a total derivative (here time derivative of /)
and hence does not affect the Euler–Lagrange equations of motion. It is nonetheless
of physical significance, as it both ensures gauge invariance and accounts for the
leading contribution to the particle density, as we will see below.

To obtain a second order time derivative term, recall that the characteristic fea-
ture of a neutral (i.e., e* = 0) superfluid is that the only excitation at low energies
is a sound wave with a linear dispersion

xðkÞ ¼ vjkj; ð29Þ
where k is the wave number and v is the velocity of sound in the fluid. As we wish the
effective Lagrange density for the superfluid both to be gauge invariant and to yield
(29) as an equation of motion for e* = 0, we arrive at

LsðxÞ ¼ �nsð�hot/ðxÞ � e�UðxÞÞ

þ ns
2m�

1

v2
�hot/ðxÞ � e�UðxÞð Þ2 � �hr/ðxÞ þ e�

c
AðxÞ

� �2
( )

: ð30Þ

With

Dl/ � �hol/� e�

c
Al; ð31Þ

where ðolÞ ¼ ð1c ot;rÞ and (Al) = (U,�A), the Lagrange density may also be written

Ls ¼ �cnsD0/þ ns
2m�

c2

v2
ðD0/Þ2 � ðDi/Þ2

� �
; ð32Þ

where i = 1,2,3. The total Lagrangian of the system is given by

L ¼
Z

d3x LsðxÞ þLbðxÞ þLemðxÞf g; ð33Þ
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where

Lem ¼ � 1

16p
F lmF lm with F lm � olAm � omAl ð34Þ

denotes the standard Maxwell Lagrange density for electromagnetism.
The astonishing feature is now that this simple Lagrangian for the compact

U (1) field / (x) (compact since the values / and / + 2p describe the same physical
state and hence must be identified) coupled to the electromagnetic gauge field ac-
counts for all the essential features of superfluidity or superconductivity. There are
also important corrections to it, but we will discover them automatically as we pro-
ceed.

To understand the physical content of the Lagrangian, it is highly instructive to
study its symmetries, in particular particle number conservation and invariance un-
der translations in space and time. We wish our analysis to apply both to the case of
a neutral and a charged superfluid. In the former case, the theory is no longer invari-
ant under a local U (1) gauge transformation (as the electromagnetic gauge transfor-
mation (7) reduces to the identity transformation for e* = 0) but still invariant under
a global U (1) rotation

WðxÞ ! eikWðxÞ or /ðxÞ ! /ðxÞ þ k; ð35Þ
where k is independent of spacetime. Physically, this symmetry corresponds to par-
ticle (or Cooper pair) number conservation. According to Noether�s theorem [17], if
under a given transformation the Lagrange density only changes by a total deriva-
tive,

DLðxÞ � dLðx; kÞ
dk

����
k¼0

¼ olF lðxÞ;

there is a conserved current associated with this symmetry:

JlðxÞ ¼ const: � dLs

dðol/ðxÞÞ
D/ðxÞ � F lðxÞ

� �
; ð36Þ

where

D/ðxÞ � d/ðx; kÞ
dk

����
k¼0

:

Current conservation means olJ
l = 0. Since (35) yields F l (x) = 0 and D/ (x) = 1,

the particle four-current (Jl) = (cq,J) is given by

JlðxÞ ¼ � 1

�h
dLs

dðol/ðxÞÞ
¼ � dLs

dðDl/ðxÞÞ
; ð37Þ

where we have chosen the normalization such that the electric current equals the
charge times the particle current:

�c
dLs

dðAlðxÞÞ
¼ �e�JlðxÞ:
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The Lagrange density (30) yields for the particle density

qðxÞ ¼ � 1

�h
dLs

dðot/ðxÞÞ
ð38Þ

¼ ns �
ns
m�

1

v2
�hot/ðxÞ � e�UðxÞð Þ ð39Þ

and for the particle current

JðxÞ ¼ � 1

�h
dLs

dðr/ðxÞÞ ð40Þ

¼ ns
m� �hr/ðxÞ þ e�

c
AðxÞ

� �
: ð41Þ

The corresponding conservation law is just the continuity equation

otqþrJ ¼ 0: ð42Þ
Note that since our Lagrangian (33) does not depend on / (x), but only on deriv-

atives of / (x), i.e.,

dLs

dð/ðxÞÞ ¼ 0;

Eq. (37) implies that the current conservation law

��holJlðxÞ ¼ ol
dLs

dðol/ðxÞÞ
¼ 0

is equivalent the Euler–Lagrange equation for the field / (x). For a neutral super-
fluid, we obtain

1

v2
o
2
t �r2

� �
/ðxÞ ¼ 0 ð43Þ

and hence the dispersion (29) by Fourier transformation.
The most important implication of (37) for the particle four-current is, however,

that the density q (x) is up to a numerical factor equal to the momentum field p (x)
conjugate to / (x):

��hqðxÞ ¼ pðxÞ � dLs

dðot/ðxÞÞ
: ð44Þ

We may hence go over to an Hamiltonian formulation, and write the Hamiltonian
density

HsðxÞ � ��hqðxÞot/ðxÞ �LsðxÞ; ð45Þ

which is now considered a functional of q (x), oi/ (x), U (x), and Ai (x), but not ot/ (x).
(In principle,Hs could also depend throughLs on / (x) and x. Note also that (45) as
the generator of time translations is not invariant under time dependent gauge trans-
formations, while the equations of motions below are invariant.) The Hamiltonian is
of course given by
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H s ¼
Z

d3xHsðxÞ: ð46Þ

Hamilton�s equations are in analogy to the familiar equations

_q ¼ oHðp; qÞ
op

; _p ¼ � oHðp; qÞ
oq

from classical mechanics given by

ot/ðxÞ ¼
dH s

dðpðxÞÞ ¼ � 1

�h
dH s

dðqðxÞÞ ð47Þ

and

��hotqðxÞ ¼ otpðxÞ ¼ oi
dH s

dðoi/ðxÞÞ
� dH s

dð/ðxÞÞ : ð48Þ

With regard to the explicit equations of motion for the fields, these equations are
equivalent to the Euler–Lagrange equation. They provide, however, additional
information regarding the physical interpretation. To extract this information, it
is propitious to study the other conservation laws corresponding to energy and
momentum first.

The theory is invariant under spacetime translations x fi x � ek, where e is an
arbitrary unit vector in spacetime (e.g. e = (1,0,0,0) or em = d0m for a translation in
time). The infinitesimal translations are equivalent to the field and density transfor-
mations [17]

/ðxÞ ! /ðxþ ekÞ ¼ /ðxÞ þ kemom/ðxÞ;
AlðxÞ ! Alðxþ ekÞ ¼ AlðxÞ þ kemomAlðxÞ;
LðxÞ ! Lðxþ ekÞ ¼ LðxÞ þ komðemLðxÞÞ;

which implies D/ = emom/, DAl = emomAl, and F lðxÞ ¼ elLðxÞ. The conserved cur-
rent associated with this symmetry is according to (36) given by

Jl ¼ dL
dðol/Þ

emom/þ dL
dðolAjÞ

emomAj � elL ¼ emT lm
can;

where the canonical energy–momentum tensor T lm
can is the sum of the contributions

from the superfluid, the uniformly charged background, and the electromagnetic
field:

T lm
can ¼ T lm

s;can þ T lm
b;can þ T lm

em;can;

where

T lm
s;can ¼

dLs

dðol/Þ
om/� glmLs; ð49Þ

T lm
b;can ¼� glmLb;

T lm
em;can ¼

dLem

dðolAjÞ
omAj � glmLem: ð50Þ
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The conservation law olT lm
can ¼ 0 describes energy conservation for m = 0 and

momentum conservation for m = i. The l = 0 components of T lm
can correspond to en-

ergy and momentum densities; in particular, �c
R
d3xT 00

can generates translations in
time and

R
d3xT 0i

can translations in space.
In the case of a gauge theory, like the theory of a charged superfluid we consider

here, it is not possible to interpret T 00
s;can as the energy or 1

c T
0i
s;can as the kinematical

momentum density of the superfluid. The reason is simply that (49) (and also (50))
is not gauge invariant. To circumvent this problem, we simply supplement the naive
translations by a suitable gauge transformation, such that the fields transform covar-
iantly:

/ ! /þ kem om/� e�

�hc
Am

� �
;

Aj ! Aj þ kemðomAj � ojAmÞ:

The gauge transformation is hence given by (27) with KðxÞ ¼ kemAmðxÞ. This yields the
‘‘kinematical’’ energy momentum tensor, with contributions from the superfluid and
the electromagnetic field

T lm
s ¼ dLs

dðDl/Þ
Dm/� glmLs;

T lm
em ¼ dLem

dðF ljÞ
F m

j � glmLem.

ð51Þ

These expressions are manifestly gauge invariant. Using (37) with l = 0 or (38), we
can write the energy density of the superfluid

T 00
s ðxÞ ¼ �qðxÞ �hot/ðxÞ � e�UðxÞð Þ �LsðxÞ: ð52Þ

Note that this is numerically equal to

T 00
s ðxÞ ¼ HsðxÞ þ qðxÞe�UðxÞ: ð53Þ

Similarly, we can write the momentum density

1

c
T 0i

s ðxÞ ¼ qðxÞ �hr/ðxÞ þ e�

c
AðxÞ

� �
: ð54Þ

We can use this expression to introduce the superfluid velocity vs (x). In terms of
vs (x), the momentum density of the superfluid has to be given by

1

c
T 0i

s ðxÞ¼
!
qðxÞm�vsðxÞ; ð55Þ

which leads us to define

m�vsðxÞ � �hr/ðxÞ þ e�

c
AðxÞ ¼ Di/ðxÞ: ð56Þ

Since vs (x) is to be interpreted as a physical velocity, it has to transform like a veloc-
ity under a Galilean transformation,

vsðxÞ ! vsðxÞ þ u: ð57Þ
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The total momentum of the superfluid will hence transform according to

1

c

Z
d3xT 0i

s ðxÞ !
1

c

Z
d3xT 0i

s ðxÞ þ
Z

d3xqðxÞm�u; ð58Þ

which implies directly that in a translationally invariant system, m* has to be the bare
mass of the superfluid particles or Cooper pairs [18].

It should also be possible to express the particle current in terms of the superfluid
velocity. Since the same particles which carry the momentum also carry the current,
the particle current has to be given by

JðxÞ ¼ qðxÞvsðxÞ: ð59Þ

This is almost, but not quite, equivalent to our earlier expression (41), as ns is only
the leading contribution to q (x). So either (59) with (56) or (41) is not fully correct.
To see which one, recall that we have only used the general expression for the density
(38) as defined through particle number conservation in obtaining (54) and hence
(56) and (59) from (51), while we have used the explicit expression for the Lagrange
density (30) in obtaining (41). In other words, only symmetry considerations enter in
(54), while (41) depends explicitly on the Lagrange density. The expression for the
momentum density (54), and hence our definition of the superfluid velocity (56), is
therefore exact, while the expression (41) for the particle current is only an approx-
imation [19].

The expression for the current, however, will assume the exact and physically cor-
rect form (59) if we introduce suitable corrections to the effective Lagrangian. To ob-
tain these, we simply require the Lagrangian to satisfy [20]

1

c
T 0i

s ðxÞ ¼ m�J iðxÞ ð60Þ

or

1

c
dLs

dðD0/Þ
Di/ ¼ �m� dLs

dðDi/Þ
: ð61Þ

Upon integration of this equation we find that the Lagrange density must be of the
form

Ls ¼ P cD0/þ 1

2m� ðDi/Þ2
� �

; ð62Þ

where P is an arbitrary polynomial. Our superfluid Lagrange density (32) will assume
this form if we add third and fourth order corrections in Dl/; the full superfluid La-
grange density is then given by [20,21]

Ls ¼ �ns cD0/þ 1

2m� ðDi/Þ2
� �

þ ns
2m�

1

v2
cD0/þ 1

2m� ðDi/Þ2
� �2

: ð63Þ

It yields for the particle density
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qðxÞ ¼ � 1

c
dLs

dðD0/Þ

¼ ns �
ns
m�

1

v2
cD0/þ 1

2m� ðDi/Þ2
� �

¼ ns �
ns
m�

1

v2
�hot/� e�Uð Þ þ 1

2m� �hr/þ e�

c
A

� �2
( ) ð64Þ

and for the particle current

JðxÞ ¼ � dLs

dðDi/Þ
¼ qðxÞvsðxÞ; ð65Þ

where q (x) and vs (x) are given by (64) and (56).
Let us now return to Hamilton�s equations, and in particular their physical inter-

pretation. With (53) we may rewrite (47) as

�hot/ðxÞ ¼ � dH s

dðqðxÞÞ ¼ � oHsðxÞ
oqðxÞ ¼ � oT 00

s ðxÞ
oqðxÞ þ e�UðxÞ

¼ �lðxÞ þ e�UðxÞ; ð66Þ

where we have used the definition of the chemical potential. This is one of two equa-
tions Anderson [7] refers to as ‘‘characteristic of superfluidity.’’ In analogy to the def-
inition (56) of vs (x), we rewrite it for later purposes as

�lðxÞ ¼ �hot/ðxÞ � e�UðxÞ ¼ cD0/ðxÞ: ð67Þ
Taking the gradient and adding e�

c otAðxÞ on both sides of (66), we obtain

ot �hr/ðxÞ þ e�

c
AðxÞ

� �
¼ �rlðxÞ � e�EðxÞ ¼ �rlel:chem:ðxÞ; ð68Þ

where we used the definitions of the electric field,

E � �rU� 1

c
otA;

and of the electrochemical potential. With (56) we may write

m�otvsðxÞ ¼ �rlel:chem:ðxÞ: ð69Þ
The gradient of the electrochemical potential (or chemical potential for a neutral
superfluid) is usually [7] identified with minus the total force on the particles, and
(69) is referred to as the ‘‘acceleration equation.’’ This is, however, not quite correct.
otvs in (69) denotes the time derivative in the superfluid velocity field at spacetime x
(known as ‘‘local acceleration’’ in hydrodynamics), while the force on the particles is
given by the time derivative of the velocity of a given particle in the fluid at x (‘‘sub-
stantial acceleration’’ in hydrodynamics):

1

m� F ¼ dvs
dt

¼ otvs þ ðvsrÞvs: ð70Þ

Nonetheless, (69) is one of the fundamental equations in the phenomenology of
superfluidity. It states that if there is a gradient in the electrochemical (or chemical)
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potential in a superconductor (or superfluid), the superfluid will be ‘‘accelerated’’
without any frictional damping. On the other hand, if the superfluid flow is station-
ary, the electrochemical (or chemical) potential has to be constant across the super-
conductor (or superfluid). Since a voltmeter measures a difference in the
electrochemical potential, there cannot be a voltage across a superconductor unless
the flow is ‘‘accelerated.’’

Let us now turn to Hamilton�s second equation (48). We first rewrite it as

��hotqðxÞ ¼ oi
dH s

dðoi/ðxÞÞ
� oHsðxÞ

o/ðxÞ : ð71Þ

Since the last term in (53), q (x) e*U (x), does not depend on the phase / (x), we may
replace HsðxÞ in the last term in (71) by T 00

s ðxÞ. Integrating the resulting equation
over the superfluid, discarding a boundary term, and defining a ‘‘global’’ derivative
with respect to the phase,

oF ½/ðxÞ�
o/

� lim
D/!0

F ½/ðxÞ þ D/�
D/

;

where F[/ (x)] is an arbitrary functional of / (x) and D/ an infinitesimal independent
of spacetime, yields

��hot

Z
d3xqðxÞ ¼ � o

o/

Z
d3xT 00

s ðxÞ

or

�hotN ¼ oEs

o/
; ð72Þ

where N is the number of particles (or pairs) and Es the energy of the superfluid. This
is the other ‘‘characteristic equation’’ of superfluidity [7].

This concludes our derivation or motivation of the fundamental equations of
superfluidity in the limit of low temperatures and low energies. Before turning to
the phenomenology these equations imply, I would like to digress briefly and justify
one of the implicit assumptions made above. The assumption is that we can describe
the macroscopic quantum phenomena of superfluidity with a classical effective field
theory, or in other words, that we may consider both the phase / (x) and its conju-
gate field p (x)=��hq (x) as thermodynamic variables. To justify this assumption, let
us canonically quantize the theory by imposing

½/̂ðx; tÞ; p̂ðy; tÞ� ¼ i�hdðx� yÞ: ð73Þ

Integration of y over the superfluid yields

½/̂ðxÞ; N̂ � ¼ �i;

which in turn implies the uncertainty relation

D/ðxÞDN P 1
2
:
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If we assume that the number of particles in the superfluid takes on a macroscopic
value of order N � 1020, a DN of the order of

ffiffiffiffi
N

p
implies a relative uncertainty of

order 10�10 in the particle number and the phase. These numbers are comparable
to the position and momentum uncertainties of a macroscopic object. The descrip-
tion of a macroscopic superfluid in terms of a classical field theory is therefore as
appropriate as the classical description of any other macroscopic object. This is of
course not in contradiction with the fact that Planck�s constant �h appears in this
effective field theory. We will see below that it manifests itself in a family of ‘‘quan-
tum effects,’’ which are related to the compactness of the U (1) field / (x). These ef-
fects require either a non-trivial topology or more than one superfluid, and are very
similar for neutral and for charged superfluids.
5. Phenomenology and the Higgs mechanism

To begin with, however, let us consider the superfluid flow in a simply connected
superfluid. The phenomenology depends strikingly on whether the fluid is charged or
not. For a neutral superfluid, e* = 0, and the gauge field decouples completely. Even
for a fixed set of boundary conditions, we have an infinite set of solutions for the
superfluid flow, corresponding via

m�vsðxÞ ¼ �hr/ðxÞ
to all possible choices of the phase field / (x). In a simply connected superfluid, the
flow will be vortex-free, i.e.,

r	 vsðxÞ ¼ 0;

and subject to boundary constraints, but apart from this, it only has to satisfy the
continuity equation as an equation of motion.

The simplest example of a multiply connected superfluid is a superfluid with a line
defect, or vortex, along which the magnitude |W (x)| of the superfluid order parame-
ter vanishes. The phase / (x) still has to be single valued everywhere in the fluid, but
being a phase, its value may change by a multiple of 2p as we circumvent the line
defect along a closed curve oS:I

oS
r/ðxÞdl ¼ 2pn; ð74Þ

where n is an integer. The angular momentum of each superfluid ‘‘particle’’ around
the vortex is hence quantized in units of �h. With Stokes theorem and the definition

xðxÞ ¼ r 	 vsðxÞ; ð75Þ
we may express this alternatively as quantization condition for the vorticityZ

S
xðxÞ � nda ¼ 2p�hn

2m� ; ð76Þ

where n is a unit vector normal to the surface and the area integral extends over any
open surface S which is pierced by the vortex once. The quantization of vortices in a
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superfluid is the simplest of the ‘‘quantum effects’’ alluded to above, where Planck�s
constant �h enters in the phenomenology through the compactness of the field / (x).
(If / (x) was not compact, we could eliminate �h completely from the effective theory
by rescaling / (x)fi �h/ (x).)

Let us now turn to the phenomenology of a simply connected charged superfluid
or superconductor, which displays the Higgs mechanism. The essence of the mecha-
nism is that the phase field / (x) looses its independent significance in the presence of
the gauge field. There are two ways of seeing this. The first is on the level of the equa-
tions of motion. We can simply choose a gauge such that / (x) = 0 everywhere in the
fluid; any other choice of gauge can be brought into this gauge via (27) with

KðxÞ ¼ �hc
e�

/ðxÞ:

The second is on the level of the effective Lagrangian. We may introduce a new vec-
tor field

� e�

c
A0
l � Dl/ ¼ �hol/� e�

c
Al: ð77Þ

In terms of this field, the superfluid Lagrange density (63) looks the same except that
all terms containing / have disappeared. In particular, the terms quadratic in the
derivatives of / in Ls have turned into a mass term

ns
2m�

1

v2
e�A0

0

	 
2 � e�

c
A0

� �2
( )

ð78Þ

for the vector field. The Maxwell Lagrange density and the Lagrange density for the
uniform neutralizing background charge take the same form with Flm and Al re-
placed by F 0

lm and A0
l, respectively, except for a total derivative or boundary term

we discard. Thus the massless gauge field Al is replaced by a massive vector field
A0
l, while the Goldstone boson / disappeared. The total number of degrees of free-

dom, however, is preserved: before, the massless vector field has two (the two helicity
states of the photon) and the Goldstone boson one, while the massive vector field
after the change of variables has three degrees of freedom. In Sidney Coleman�s
words, ‘‘the vector field has eaten the Goldstone bosons and grown heavy’’ [1].
We will return to this issue after studying the phenomenology of the superconductor
using the equations of motion.

The Euler–Lagrange equation for Al,

ol
dL

dðolAmÞ
� dL
dAm

¼ 0;

yields Maxwell�s electrodynamics with electric charge density �e*(q � ns) and cur-
rent �e*J,

r � E ¼ �4pe�ðq� nsÞ; ð79Þ

r 	 B � 1

c
otE ¼ � 4pe�

c
J; ð80Þ
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where

E ¼ �rU� 1

c
otA; B ¼ r	 A;

and q and J are given by (64) and (65), respectively. In principle, we could also ob-
tain the continuity equation (42) as the Euler–Lagrange equation for /, but since L

depends on derivatives of Al only through Flm and / is minimally coupled to Al, (42)
is automatically satisfied by any solution of (79) and (80). This is consistent with the
fact that / has lost its independent significance due to the Higgs mechanism.

For convenience, we choose the gauge / (x) = 0. Then (64), (65), and (56) imply

4pe�ðq� nsÞ ¼
4pe�2ns
m�v2

U� e�

2m�c2
A2

� �
; ð81Þ

4pe�

c
J ¼ 4pe�2ns

m�c2
A 1þ e�

m�v2
U� e�

2m�c2
A2

� �� �
: ð82Þ

Let us now restrict our attention to quasistatic phenomena, where we can neglect the
time derivative terms. The analysis given below implies that this assumption holds
for frequencies significantly smaller than c/kL, where

kL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�c2

4pe�2ns

s
ð83Þ

is the London penetration depth. Then (79)–(82) reduce to

r2U ¼ c2

v2
1

k2L
U� e�

2m�c2
A2

� �
; ð84Þ

r2A�rðrAÞ ¼ 1

k2L
A 1þ e�

m�v2
U� e�

2m�c2
A2

� �� �
: ð85Þ

Let us first look at the linear terms in these equations, i.e., the solution for infinites-
imal U and A. Under quasistatic conditions, (80) implies $J = 0 and with (82) for
infinitesimal fields $A = 0. The equations reduce to

r2U ¼ c2

v2
1

k2L
U; ð86Þ

r2A ¼ 1

k2L
A; ð87Þ

i.e., we have electric screening in addition to magnetic screening, but with a screening
length reduced by a factor v/c. This leads us to conjecture that the dominant energy is
the Coulomb interaction, which effects charge neutrality or q (x) � ns. We now simply
assume that this is a valid approximation, and justify it a posteriori. Then (81) implies

U� e�

2m�c2
A2 ¼ 0; ð88Þ
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and (82) reduces to

J ¼ e�ns
m�c

A: ð89Þ

Taking the curl of this equation, we obtain London�s equation [22,23]

r	 J ¼ e�ns
m�c

B: ð90Þ

Under quasistatic conditions, we have again $J = 0 and with (89) $A = 0, which im-
plies that (85) reduces to (87). The solution of (87) describes exponential screening
with penetration depth kL. If we have, for example, a superconductor which occupies
the half-space x > 0 subject to an external magnetic field B ¼ B0ŷ at the boundary
x = 0, we obtain

A ¼ A0e
�x=kL ẑ; B ¼ B0e

�x=kL ŷ; J ¼ J 0e
�x=kL ẑ; ð91Þ

where

A0 ¼ kLB0; J 0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ns

4pm�

r
B0:

The screening of the magnetic field is known as the Meissner effect. According to
(88), the vector potential implies an electrostatic potential

U ¼ B2
0

8pe�ns
e�2x=kL : ð92Þ

This potential allows us to verify the validity of our approximation q (x) � ns. Substi-
tuting (92) into (84), we find that the ratio of the neglected term to the terms kept is

r2U
c2
v2

1
k2L
U
¼ 4v2

c2

 1; ð93Þ

i.e., the approximation is excellent.
The electrostatic potential (92) is called the London or Bernoulli Hall effect

[22,20]. To understand its physical origin, it is best to rewrite (88) with (56) for
/ (x) = 0 in terms of the superfluid velocity:

�e�Uþ 1

2
m�v2s ¼ 0: ð94Þ

The electrostatic potential simply compensates the kinetic energy contribution to the
chemical potential, as required by (66) with / (x) = 0. For stationary flow, this con-
dition reduces to the requirement that the electrochemical potential lel.chem. is con-
stant across the superconductor. In practice, the London Hall effect can only be
measured with capacitive contacts, as ohmic contacts are sensitive to the electro-
chemical rather than the electrostatic potential [24]. The effect furnishes us with an
independent meaning of the superfluid density ns or the effective mass m*, while un-
der quasistatic conditions all other effects [25] depend only on the superfluid stiffness
ns/m*. The underlying theoretical reason is that the London Hall effect is a conse-
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quence of the corrections incorporated in the effective Lagrange density (63). In these
terms, the parameter m* enters by itself, while (apart from a total time derivative
term irrelevant to the equations of motion) only the combination ns/m* entered in
the previous approximative Lagrangian (33) with (30), (26), and (34).

Since we have given a precise definition of the superfluid velocity, it is legitimate
to ask whether the London Hall effect (94) balances the Lorentz force, or, if not,
what other forces balance it. The total electromagnetic force on a given particle with
charge �e* in the fluid is given by

Fem ¼ �e� E þ vs
c
	 B

� �
¼ �e� � 1

c
otA�rUþ vs

c
	 ðr 	 AÞ

� �
: ð95Þ

With (94) and (56) we obtain

Fem ¼ m� otvs þ 1
2
rðvsÞ2 � vs 	 ðr 	 vsÞ

� �
¼ m� otvs þ ðvsrÞvsð Þ ¼ m� dvs

dt
:

Thus the gradient $U of the electrostatic potential (94) does not balance the Lorentz
force 1

c vs 	 B, but both terms together account for the difference between local and
substantial acceleration (70) in the superfluid. This difference is significant when, for
example, the flow is stationary but does not follow a straight line.

Let us summarize how the Higgs mechanism manifests itself in the equations of
motion. For a neutral superfluid with e* = 0, there are many solutions to

JðxÞ ¼ qvs ¼
q
m� �hr/þ e�

c
A

� �

for fixed boundary conditions, corresponding to all possible configurations for the
phase field / (x). These solutions reflect the existence of the massless sound mode de-
scribed by the field / (x). For the charged superfluid, however, all the different con-
figurations for / (x) merely correspond to different choices of gauge; as far as the
current or magnetic field distributions are concerned, all these solutions are always
equivalent to one for which we have / (x) = 0. Thus the field / does no longer de-
scribe an excitation. For a simply connected superconductor, it is only meaningful
in that it assures gauge invariance, both on the level of the Lagrange density and
on the level of the equations of motion. The solution of these equations is physically
(i.e., apart from the freedom to choose the gauge) unique for a given set of boundary
conditions.

We now return to the manifestation of the Higgs mechanism on the level of the
Lagrangian. For a simply connected superconductor, we have already seen that
we may eliminate the phase field / if we introduce a new vector field A0

l according
to (77). The mass term (78) we find for A0

l may appear to violate gauge invariance,
as mass terms generally do, and may, at first sight, to be taken as a signature of a
spontaneously broken gauge invariance. For one thing, however, gauge invariance
is not violated. From the definition (77) it is clear that the new field simply trans-
forms as

A0
lðxÞ ! A0

lðxÞ
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under a gauge transformation (27). The Lagrangian hence remains manifestly gauge
invariant, and has to remain gauge invariant, as it is the same Lagrangian as before
expressed in terms of different fields. Furthermore, if a symmetry is spontaneously
broken, it is never violated on the level of the Lagrangian or the Hamiltonian, but
only on the level of the ground state.

In the literature, one sometimes finds the statement that ‘‘the gauge field acquires
a mass’’ due to the Higgs mechanism. This is not exactly to the point, as it suggests
that the massive vector field A0

l is still a gauge field, while we have just seen that it is
gauge invariant. In the case of a superconductor, we even know how to interpret the
individual components of A0

l physically. According to (77), (67), and (56),

� e�

c
ðA0

lÞ ¼ � l
c
;m�vs

� �
: ð96Þ

The Higgs mechanism hence does not imply that ‘‘the electromagnetic gauge field ac-
quires a mass,’’ but only that we can describe the superconductor in terms of gauge
invariant fields, that is, in terms of the chemical potential l (x) and the superfluid
velocity vs (x). If we do this, we also have to express the Maxwell Lagrange density
(34) in terms of l and vs. With

�1
2
F lmF lm ¼ E2 � B2

we obtain for the total Lagrange density

L ¼ 1

8pe�2
ðrlþ m�otvsÞ2 � c2m�2ðr 	 vsÞ2
n o

� ns lþ �lþ 1

2
m�v2s

� �
þ 1

2m�
1

v2
�lþ 1

2
m�v2s

� �2
( )

: ð97Þ

The Euler–Lagrange equations we obtain from (97) for l and vs are equivalent to
(79)–(82), and yield exactly the same solution as above. Writing the Lagrangian in
terms of l and vs does not yield any practical advantage, but clearly illustrates that
gauge invariance has become irrelevant—it is not broken, but has simply left the
stage. Since all the fields are gauge invariant, (97) does not even provide a framework
to think of a spontaneous violation of a gauge invariance.

These considerations apply to every field theory which displays the Higgs mech-
anism. In any such theory, the Lagrange density is invariant under a global physical
symmetry for a matter field, and invariant under a local gauge symmetry, which af-
fects both the matter field and the gauge field. The global symmetry is ‘‘physical’’ as
we can classify the states of matter according to their transformation properties,
while the gauge symmetry is ‘‘unphysical’’ as gauge transformations have no effect
on the states of matter, but only on our description of these states. In our example
of a superfluid, charged or neutral, the global symmetry transformation is

/ðxÞ ! /ðxÞ þ k; ð98Þ
where k is independent of spacetime. This symmetry is spontaneously violated, which
means that there are many degenerate ground states which map into each other un-
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der (98). For a neutral superfluid, we obtain a massless mode according to Gold-
stone�s theorem. The situation is more subtle for a superconductor, as the matter
field is coupled to a gauge field and the Lagrange density is also invariant under
the gauge transformation (27). This ‘‘unphysical’’ symmetry, however, seems to con-
tain the physical symmetry as the special case

KðxÞ ¼ � �hc
e�

k: ð99Þ

The formal equivalence of the transformation (98) and (27) with (99) is at the root of
the widely established but incorrect interpretation of (98) as a gauge transformation,
and in particular of the spontaneous violation of (98) as a spontaneous violation of a
gauge symmetry. (This is presumably the reason why particle physicists like Steven
Weinberg speak of ‘‘spontaneously broken gauge symmetries’’ interchangeably with
‘‘the Higgs mechanism.’’) The problem here is that the equivalence is only formal.
The gauge transformation (99) represents a transformation of our description, sim-
ilar to a rotation of a coordinate system we use to describe a physical state, while the
transformation (98) corresponds to a transformation of our physical state, like a
rotation of a physical system. Clearly, a (counterclockwise) rotation of the coordi-
nate system has the same effect on our equations as a (clockwise) rotation of the
physical system we describe with these equations, but the transformations are all
but equivalent. It is not correct to refer to the spontaneous violation of (98) as a
spontaneous violation of gauge symmetry. A gauge symmetry cannot be spontane-
ously violated as a matter of principle.

The difference between the ‘‘physical’’ symmetry (98) and the gauge symmetry
(27) can also be appreciated at the level of conservation laws. The former yields par-
ticle number (or charge) as a conserved quantity, according to (42), while there is no
conservation law associated with the latter. In the literature, (98) is often referred to
as a global gauge transformation, and the conservation of charge attributed to gauge
invariance. This view, however, is not consistent. If one speaks of a global gauge
symmetry, this symmetry has to be a proper subgroup of the local gauge symmetry
group. The alleged global gauge symmetry hence cannot be a ‘‘physical’’ symmetry
while the local gauge symmetry is an invariance of description, or be spontaneously
violated while the local symmetry is fully intact. The difference between the global
phase rotation (98) and a global gauge rotation (99) is even more at evident at the
level of quantum states. The BCS ground state (1) is, for example, not invariant un-
der (98), while it is fully gauge invariant, as we have seen in Section 2.

The conclusions regarding the physical significance (or maybe better insignifi-
cance) of gauge transformations we reached here for superconductors hold for any
field theory which displays the Higgs mechanism.
6. Quantum effects

This discussion of the Higgs mechanism applies only to simply connected super-
conductors. If we have a nontrivial topology or more than one superfluid, the phase
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field / reassumes physical significance through its compactness, that is, the fact that
its value is only defined modulo 2p. In these situations, we are not allowed to set
/ (x) = 0 in the equations of motion or eliminate it from the effective Lagrange den-
sity via (77) or (96), as we would loose the information regarding the compactness.
Since the phase field / is multiplied by Planck�s constant �h whenever it enters in the
Lagrange density, any effect due to the compactness of / will depend on �h, and only
exist for �h „ 0. Therefore we refer to them as ‘‘quantum effects.’’

The simplest of these effects in superconductors is the quantization of magnetic
flux, which is analogous to the quantization of vorticity in neutral superfluids. The
effect was predicted by London in a footnote in his first book [22,26] almost a decade
before BCS proposed their microscopic theory. Consider a macroscopic supercon-
ductor with a hole in it, which may either be a hole in the superconducting material
or a line defect or vortex in the superconducting order parameter. Like in the case of
a vortex in a neutral superfluid, the phase field / has to be single valued everywhere
in the superconductor, but may change by a multiple of 2p as we circumvent the hole
or defect along a closed curve oS:I

oS
r/ðxÞdl ¼ 2pn; ð100Þ

where n is an integer. We now take oS well inside the superconductor, that is, sepa-
rated at each point by a distance much larger than the penetration depth kL from the
hole or defect. Then, according to the Meissner effect or our derivation of London�s
equation above, which still applies locally, the superfluid velocity

vs ¼
1

m� �hr/þ e�

c
A

� �

has to vanish along oS, and (100) impliesI
oS
AðxÞdl ¼

Z
S
BðxÞ � nda ¼ hc

e�
� n; ð101Þ

where we have used Stokes theorem once more. The magnetic flux through the hole
or vortex is hence quantized in units of hc/e*, which for e* = 2e is half of the Dirac
flux quantum. Note that the vorticity (75) is not quantized in a superconductor.

We now review two further quantum effects, which are similar in neutral and
charged superfluids; as in our derivation of the effective theory above, the equations
for the latter case contain the former as the special case e* = 0. One of the effects is
phase slippage [7]. Consider two points 1 and 2 in a superfluid, which are connected
by a vertical path (see Fig. 2A). Now imagine we adiabatically move a vortex from the
very far left across the path to the very far right. This process yields a difference in the
electrochemical potential between the two points, which is according to (68) given by

Dlel:chem: ¼ �ot

Z 2

1

�hr/ðxÞ þ e�

c
AðxÞ

� �
dl: ð102Þ

where the line integral is taken along the path between the points. The time inte-
grated difference in the electrochemical potential is hence given by the difference



Fig. 2. Phase slippage: a vortex moving in a superfluid induces a transverse gradient in the (electro)
chemical potential by dragging a branch cut in the phase of the order parameter with it.
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between the line integral at the end of the process and the line integral at the begin-
ning. Let us first consider the case of a neutral superfluid, i.e., e* = 0. The line inte-
gral of $/ will have changed by 2p, as the difference in the paths is topologically
equivalent to encircling the vortex once (see Fig. 2B). Alternatively, we may say
the vortex has dragged a branch cut across the path. (We assume that at the begin-
ning and the end, the vortex is so far away from points 1 and 2 that we can neglect its
influence on the line integral.) If we now have a continuous flow of vortices across
the path, the line integral will pick up a contribution of 2p�h from each of them,
and we obtain a chemical potential difference

Dl ¼ hhotN viav; ð103Þ
where ÆotNvæav is the average rate of vortices crossing the path.

Let us now turn to the case of a superconductor, where we assume that during
the entire process the distance between the vortex and either of the points 1 and
2 is much larger than the penetration depth. Since the line integral we obtain when
encircling a superconducting vortex along a circle well inside the superconductor is
zero, I

R�kL

�hr/ðxÞ þ e�

c
AðxÞ

� �
dl ¼ 0; ð104Þ

we do not obtain a difference in the electrochemical potential as we move an isolated
vortex carrying a magnetic flux quantum across the path. So, at first sight, it may
appear as there is no phase slippage effect in superconductors. The situation just de-
scribed, however, is not the general one, as we dragged a unit of magnetic flux with
the vortex from the very far left to the very far right. This produced a Hall effect
which exactly canceled the phase slippage effect. If we consider a situation where
we have a large, almost uniform magnetic field and an Abrikosov vortex lattice or
liquid in which the distance between the vortices is much smaller than the penetra-
tion depth, and we have a flow of vortices across the path, the magnetic field will re-
main to a reasonable approximation unaffected by the flow and we recover (103) for
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the electrochemical potential difference. The voltage we measure between the two
points is then given by

U ¼ h
2e

hotN viav: ð105Þ

This voltage is known as the Nernst effect in superconductors.
The last and possibly most striking quantum effect we review is the Josephson ef-

fect [27]. Consider two superfluids or superconductors S1 and S2, which are weakly
coupled, say by a narrow constriction for superfluid particles or a tunneling barrier
for Cooper pairs. The only requirement for the effect is that there is an energy asso-
ciated with the weak link, which depends on the (gauge invariant) phase difference
D/ between two points 2 and 1 in superfluids S2 and S1:

Ejunction ¼ f ðD/Þ ð106Þ
with

D/ � /ð2Þ � /ð1Þ þ e�

�hc

Z 2

1

AðxÞdl; ð107Þ

where the line integral is taken along the path the superfluid particles take when they
move from one superfluid to the other. Note that D/ divided by the distance between
the points 2 and 1 is just the discrete version of the gradient term

�hr/ðxÞ þ e�

c
AðxÞ

we already encountered in the Ginzburg–Landau free energy, where the magnetic en-
ergy (25) was essentially given by its square. We assume that Ejunction is likewise min-
imal for D/ = 0, which implies that the first term in a Taylor expansion around this
minimum is quadratic in D/. In the case of the junction, however, this term is not
sufficient. Since / is only defined modulo 2p, f(D/) has to be a periodic function
of D/. Josephson has shown that to a reasonable approximation, it is given by

f ðD/Þ ¼ �E0 cosðD/Þ: ð108Þ
Let us now assume a situation where both macroscopic superfluids are in a state of
equilibrium, but the phases are not necessarily aligned relative to each other. Then
only the energy stored in the junction depends on the phases of the superfluids,
and the ‘‘characteristic equation’’ (72) becomes for superfluid S2

�hotN 2 ¼
oEjunctionðD/Þ

o/ð2Þ ; ð109Þ

where N2 is the number of superfluid particles or Cooper pairs in S2. (We would also
obtain a similar equation for S1, but since we assume N1 + N2 = const. and Ejunction

only depends on /(2) � /(1), it does not provide any additional information.) The
particle current from superfluid S1 to S2 is hence given by

J 1!2 ¼
1

�h
oEjunctionðD/Þ

o/ð2Þ ¼ 1

�h
E0 sinðD/Þ: ð110Þ
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On the other hand, since the other ‘‘characteristic equation’’ (66) holds for each
superfluid,

�hot /ð2Þ � /ð1Þð Þ ¼ � lð2Þ � lð1Þð Þ þ e� Uð2Þ � Uð1Þð Þ: ð111Þ
If we add

ot
e�

c

Z 2

1

AðxÞdl

to both sides of (111), we obtain

�hotD/ ¼ �ðlð2Þ � lð1ÞÞ � e�
Z 2

1

EðxÞdl ¼ �Dlel:chem:; ð112Þ

or, if we take Dlel.chem. time independent,

D/ðtÞ ¼ �Dlel:chem:

�h
� t þ D/0:

Substitution into (110) yields

J 1!2 ¼
E0

�h
sin 2pmt þ D/0ð Þ; ð113Þ

where

m � �Dlel:chem:

h
ð114Þ

is the Josephson frequency. This implies that if the electrochemical potential is equal
for both superfluids, we find a DC particle current depending on the initial alignment
of the phases. If there is a difference in the potential, however, the current will oscil-
late with frequency m. This is called the AC Josephson effect. The effect exists for both
neutral and charged superfluids, but it is much easier to measure in a superconduc-
tor, as we can realize a difference in the electrochemical potential by applying a volt-
age U across the junction, Dlel.chem. = �2eU, and easily measure oscillations in the
electrical current.

Note that the Josephson effect, so astonishing its phenomenology may be, follows
through the ‘‘characteristic’’ equations of superfluidity directly from the fact that
there is a broken symmetry in superfluids and that the compact phase field which la-
bels the different degenerate ground states is the field conjugate to the density in the
superfluid. The other assumption we made in this article, the assumption that both
current and momentum are carried by the same species of particles in a superfluid,
was not required to explain any of the quantum effects.
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Appendix A

In this appendix, we derive the position space wave function (4) by projecting the
BCS state (1) onto a fixed number of pairs N. The (unnormalized) BCS state may be
written

jw/i ¼
Y
k

1þ ei/
vk
uk

cyk"c
y
�k#

� �
j0i ¼

Y
k

exp ei/
vk
uk

cyk"c
y
�k#

� �
j0i

¼ exp ei/
X
k

vk
uk

cyk"c
y
�k#

 !
j0i ¼ exp ei/by

	 

j0i:

The pair creation operator b� is given by

by �
X
k

vk
uk

cyk"c
y
�k# ¼

Z
d3x1d

3x2uðx1 � x2Þwy
"ðx1Þwy

#ðx2Þj0i;

where u(x) is given by (6). If we now project out a state with N pairs according to (3),
we obtain

jwN i ¼
Z 2p

0

d/e�iN/ exp ei/by
	 


j0i ¼ 2p
N !

by
	 
N j0i;

which is (up to a normalization) equivalent to (4).
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superconductor. See [22], Section 12;
J. Tate, B. Cabrera, S.B. Felch, J.T. Anderson, Phys. Rev. Lett. 162 (1989) 845.

[26] See p. 152. Note that this prediction shows that London had fully understood the significance of
vector potentials in quantum mechanics almost a decade before the acclaimed work by Y. Aharonov
and D. Bohm.

[27] B.D. Josephson, Phys. Lett. 1 (1962) 251.
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