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Preface

The immediate advance we communicate with this monograph is the discovery of
an exact model for a critical spin chain with arbitrary spin S, which includes the
Haldane—Shastry model as the special case S = % For S > 1, we propose that
the spinon excitations obey a one-dimensional version of non-Abelian statistics,
where the topological degeneracies are encoded in the fractional momentum
spacings for the spinons. The model and its properties, however, are not the
only, and possibly not even the most important thing one can learn from the
analysis we present.

The benefit of science may be that it honors the human spirit, gives plea-
sure to those who immerse themselves in it, and pragmatically, contributes to
the improvement of the human condition in the long term. The purpose of the
individual scientific work can hence be either a direct contribution to this im-
provement, or more often an indirect contribution by making an advance which
inspires further advances in a field. When we teach Physics, be it in lectures,
books, monographs, or research papers, we usually teach what we understand,
but rarely spend much effort on teaching how this understanding was obtained.
The first volume of the famed course of theoretical physics by L.D. Landau and
E.M. Lifshitz [92], for example, begins by stating the principle of least action,
but does nothing to motivate how it was discovered historically or how one could
be led to discover it from the study of mechanical systems. This reflects that
we teach our students how to apply certain principles, but not how to discover
or extract such principles from a given body of observations. The reason for
this is not that we are truely content to teach students of physics as if they
were students of engineering, but that the creative process in physics is usually
erratic and messy, if not plainly embarrassing to those actively involved, and
hence extremely difficult to recapture. As with most of what happens in reality,
the actual paths of discovery are usually highly unlikely. Since we enjoy the
comfort of perceiving actions and events as more likely and sensible, our minds
subconsciously filter our memory to this effect.

One of the first topics I immersed myself in after completing my graduate
coursework was Laughlin’s theory of the fractionally quantized Hall effect [95].
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iv Preface

I have never completely moved away from it, as this work testifies, and take
enormous delight whenever I recognize quantum Hall physics in other domains
of physics. More important than the theory itself, however, was to me to un-
derstand and learn from the way R.B. Laughlin actually discovered the wave
function. He numerically diagonalized a system of three electrons in a magnetic
field in an open plane, and observed that the total canonical angular momen-
tum around the origin jumped by a factor of three (from 3% to 94) when he
implemented a Coulomb interaction between the electrons. At the same time,
no lesser scientists than D. Yoshioka, B.I. Halperin, and P.A. Lee [159] had, in
an heroic effort, diagonalized up to six electrons with periodic boundary con-
ditions, and concluded that their data were “supportive of the idea that the
ground state is not crystalline, but a translationally invariant “liquid.”” Their
analysis was much more distinguished and scholarly, but unfortunately, did not
yield the wave function.

The message I learned from this episode is that it is often beneficial to leave
the path of scholarly analysis, and play with the simplest system of which one
may hope that it might give away natures thoughts. For the Laughlin series of
quantized Hall states, this system consisted of three electrons. I spend most of
my scientific life adapting this approach to itinerant antiferromagnets in two
dimensions, where I needed to go to twelve lattice sites until I could grasp
what nature had in mind. But I am digressing. To complete the story about
the discovery of the quantum Hall effect, Laughlin gave a public lecture in
Amsterdam within a year of having received the Nobel price. He did not mention
how he discovered the state, and at first couldn’t recall it when I asked him in
public after the lecture. As he was answering other questions, he recalled the
answer to mine and weaved it into the answer of another question. During the
evening in a cafe, a very famous Russian colleague whom I regard with the
utmost respect commented the story of the discovery with the words “But this
is stupid!”.

Maybe it is. If it is so, however, the independent discoveries of the spin %
model by F.D.M. Haldane [65] and B.S. Shastry [124] may fall into the same
category. Unfortunately, I do not know much about these discoveries. Haldane
told me that he first observed striking degeneracies when he looked at the model
for N = 6 sites numerically, motivated by the fact that the 1/r? exchange is the
discrete Fourier transform of e(k) = k (k — 27) in one dimension. Shastry told
me that he discovered it “by doing calculations”, which is not overly instructive
to future generations. If my discovery of the general model I document in this
monograph will be perceived in the spirit of my friends comment, I will at least
have made no attempt to evade the charge.

In short, what I document on these pages is not just an exact model, but a
precise and reproducible account of how I discovered this model. This reflects
my belief that the path of discovery can be as instructive to future generations
as the model itself. Of course, the analysis I document does not fully reflect the
actual path of discovery, but what would have been the path if my thinking had
followed a straight line. It took me about four weeks to obtain all the results and
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about four months to write this monograph. The reason for this discrepancy is
not that my writing proceeds slowly, but that I had left out many intermediate
steps when I did the calculation. The actual path of discovery must have been
highly unlikely. In any event, it is comforting to me that, now that I have written
a scholarly and coherent account of it, there is little need to recall what actually
might have happened.

I am deeply grateful to Ronny Thomale for countless discussions and his crit-
ical reading of the manuscript, to Burkhard Scharfenberger, Dirk Schuricht, and
Stephan Rachel for collaborations on various aspects of quantum spin chains, to
Rose Schrempp and the members of the Institute for Theory of Condensed Mat-
ter at KIT for providing me with a pleasant and highly stimulating atmosphere,
and especially to Peter Wolfle for his continued encouragement and support.

Karlsruhe, April 2011 Martin Greiter
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Chapter 1
Introduction and summary

Fractional quantization, and in particular fractional statistics [150, 129], in two-
dimensional quantum liquids is witnessing a renaissance of interest in present
times. The field started more than a quarter of a century ago with the discov-
ery of the fractional quantum Hall effect, which was explained by Laughlin [95]
in terms of an incompressible quantum liquid supporting fractionally charged
(vortex or) quasiparticle excitations. When formulating a hierarchy of quan-
tized Hall states [63, 72, 42] to explain the observation of quantized Hall states
at other filling fractions fractions, Halperin [72] noted that these excitations
obey fractional statistics, and are hence conceptually similar to the charge-flux
tube composites introduced by Wilczek two years earlier [149]. Physically, the
fractional statistics manifests itself through fractional quantization of the kine-
matical relative angular momenta of the anyons.

The interest was renewed a few years later, when Anderson [5] proposed that
hole-doped Mott insulators, and in particular the ¢t—J model [162, 27] univer-
sally believed to describe the CuO planes in high T, superconductors [160, 113],
can be described in terms of a spin liquid (i.e., a state with strong, local anti-
ferromagnetic correlations but without long range order), which would likewise
support fractionally quantized excitations. In this proposal, the excitations are
spinons and holons, which carry spin % and no charge or no spin and charge +e,
respectively. The fractional quantum number of the spinon is the spin, which
is half integer while the Hilbert space (for the undoped system) is built up of
spin flips, which carry spin one. One of the earliest proposals for a spin liquid
supporting deconfined spinon and holon excitations is the (Abelian) chiral spin
liquid [77, 78, 122, 140]. Following up on an idea by D.H. Lee, Kalmeyer and
Laughlin [77, 78] proposed that a quantized Hall wave function for bosons could
be used to describe the amplitudes for spin-flips on a lattice. The chiral spin
liquid state did not turn out to be relevant to CuO superconductivity, but re-
mains one of very few examples of two-dimensional spin liquids with fractional
statistics. Other established examples of two-dimensional spin liquids include
the resonating valence bond (RVB) phases of the Rokhsar-Kivelson model [87]
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on the triangular lattice identified by Moessner and Sondhi [106], of the Kitaev
model [84], and of the Hubbard model on the honeycomb lattice [104].

While usually associated with two-dimensional systems, fractional statistics
is also possible in one dimension. The paradigm for one-dimensional anyons are
the spinon excitations in the Haldane-Shastry model [65, 124], a spin chain
model with S = % and long-ranged Heisenberg interactions. The ground state
can be generated by Gutzwiller projection of half-filled bands of free fermions,
and is equivalent to a chiral spin liquid in one dimension. The unique feature
of the model is that the spinons are free in the sense that they only interact
through their fractional statistics [68, 50]. The half-fermi statistics was originally
discovered and formulated through a fractional exclusion or generalized Pauli
principle [66], according to which the creation of two spinons reduces the number
of single particle states available for further spinons by one. It manifests itself
physically through fractional shifts in the spacings between the kinematical
momenta of the individual spinons [51, 52, 46].

The present renaissance of interest in fractional statistics is due to possible
applications of states supporting excitations with non-Abelian statistics [130] to
the rapidly evolving field of quantum computation and cryptography [85, 111].
The paradigm for this universality class, is the Pfaffian state introduced by
Moore and Read [108] in 1991. The state was proposed to be realized at the
experimentally observed fraction v = 2 [153] (i.e., at v = 3 in the second Lan-
dau level) by Wen, Wilczek, and ourselves [54, 55], a proposal which recently
received experimental support through the direct measurement of the quasi-
particle charge [24, 117]. The Moore-Read state possesses p + ip-wave pairing
correlations. The flux quantum of the vortices is one half of the Dirac quantum,
which implies a quasiparticle charge of e/4. Like the vortices in a p-wave super-
fluid, these quasiparticles possess Majorana-fermion states [118] at zero energy
(i.e., one fermion state per pair of vortices, which can be occupied or unoccu-
pied). A Pfaffian state with 2L spatially separated quasiparticle excitations is
hence 27 fold degenerate [112], in accordance with the dimension of the internal
space spanned by the zero energy states. While adiabatic interchanges of quasi-
particles yield only overall phases in Abelian quantized Hall states, braiding of
half-vortices of the Pfaffian state will in general yield non-trivial changes in the
occupations of the zero energy states [76, 131], which render the interchanges
non-commutative or non-Abelian. In particular, the internal state vector is in-
sensitive to local perturbations—it can only be manipulated through non-local
operations like braiding of the vortices or measurements involving two or more
vortices simultaneously. For a sufficiently large number of vortices, on the other
hand, any unitary transformation in this space can be approximated to arbitrary
accuracy through successive braiding operations [32]. These properties together
render non-Abelions preeminently suited for applications as protected qubits in
quantum computation [22, 111, 17, 109, 130]. Non-Abelian anyons are further
established in certain other quantum Hall states described by Jack polynomi-
als [41, 128, 15] including Read-Rezayi states [119], in the non-Abelian phase of
the Kitaev model [84], in the Yao—Kivelson model [158], and in the non-Abelian
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chiral spin liquid proposed by Thomale and ourselves [53]. In this liquid, the am-
plitudes for renormalized spin-flips on a lattice with spins S = 1 are described
by a bosonic Pfaffian state.

The connection between the Haldane-Shastry ground state, the chiral spin
liquid, and a bosonic Laughlin state at Landau level filling fraction v = % sug-
gests that one may consider the non-Abelian chiral spin liquid in one dimension
as a ground state for a spin chain with S = 1. This state is related to a bosonic
Moore-Read state at filling fraction v = 1. In this monograph, we will intro-
duce and elaborate on this one-dimensional spin liquid state, construct a parent
Hamiltonian, and generalize the model to arbitrary spin S. We further propose
that the spinon excitations of the states for S > 1 will obey a novel form of
“non-Abelian” statistics, where the internal, protected Hilbert space associated
with the statistics is spanned by topological shifts in the spacings of the single
spinon momenta when spinons are present.

Most of the book will be devoted to the construction of the model Hamilto-
nian for spin S. In Chapter 2, we introduce three exact models, and the ground
state for the S = 1 spin chain for which we wish to construct a parent Hamil-
tonian. The exact models consist of Hamiltonians, their ground states, and the
elementary excitations, which are in some cases exact and in others approximate
eigenstates of the Hamiltonian. In Section 2.1, we review the Laughlin v = %
state for quantized Hall liquids,

M M
2
¢0(21722,...,ZM) ZH(Zi—Zj)mH€7%|21| R (11)
i<j i=1

where the z;’s are the coordinates of M electrons in the complex plane, and m
is odd for fermions and even for bosons. For m = 2, its parent Hamiltonian is
given by the kinetic term giving rise to Landau level quantization supplemented
by a J-function potential, which excludes the component with relative angular
momentum zero between pairs of bosons. The ground state wave function for
a bosonic m = 2 Laughlin state is similar to the ground state of the Haldane—
Shastry model we review in Section 2.2,

M M
1/15‘5(21,22,...,21\4):H(zifzj)z Hzi, (1.2)
i<i i=1

where the z;’s are now coordinates of spin flips for a spin chain with IV sites on a
unit circle embedded in the complex plane, and M = % The Haldane—Shastry

Hamiltonian,
2 N
2 S.S
HYS = (1\7;) Py (1.3)
a<pB ‘na - 77B|

where 7, = el ¥ are the coordinates of the N sites on the unit circle, however,
bears no resemblance to the §-function Hamiltonian for the Laughlin states. We
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will elaborate in Section 3.1 that these models are both physically and math-
ematically sufficiently different to consider them unrelated. Even the ground
state wave functions, when adapted as far as any possible by formulating the
bosonic Laughlin state on the sphere and by inserting a quasihole at the south
pole, differ due to different Hilbert space normalizations. From a scholarly point
of view, there just appears to be no connection.

From a pragmatic point of view, however, we may view both Hamiltonians
as devices to obtain the coefficients of the polynomial

N

IT i = =)

1<i

for particle numbers such that the Hamiltonians can be diagonalized numeri-
cally. In fact, Haldane [63] introduced the parent Hamiltonian for the Laughlin
state in order to obtain the coefficients of all the configurations of the state
vector for N = 6, which he could then compare numerically to the exact ground
state for Coulomb interactions. This raises the question whether the recipes
used by both Hamiltonians for obtaining these coefficients are really different.
If one wishes to attribute the results we presented to a discovery, this discovery
is that they are not.

When we “derive” the Haldane—Shastry model from the bosonic m = 2
Laughlin state and its d-function parent Hamiltonian in Chapter 3, we really
first extract this recipe from the quantum Hall Hamiltonian, and then use it
to construct a parent Hamiltonian for the quantum spin chain, which has to
be Hermitian, local, and invariant under translations, parity, time reversal, and
SU(2) spin rotations. Written in the language of the spin system, the recipe
is the condition that the Haldane—Shastry ground state is annihilated by the

operator
N

or=> —Losis; 0PI -0 Yo ()
p=1 1%
Ba

The Haldane—Shastry model has been known for more than two decades, but
while Haldane and Shastry independently discovered it, we derive it. Unlike
the discoveries, this derivation lends itself to a generalization to higher spins.
The construction of exact models of critical spin chains following the line of
reasoning we use in our derivation of the Haldane-Shastry model is the subject
of this monograph.

In Section 2.3, we review the properties of the Moore—Read state [108, 54, 55],

N N
w()(zlwzQ?"'ﬂzN):Pf( : )H(zi_zj)ml_[e_iz’izﬁ (15)
i=1

S
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at Landau level filling fraction v = %, where m is even for fermions and odd for
bosons, with emphasis on the non-Abelian statistics of the half-vortex quasi-
particle excitations. For m = 1, the Pfaffian state is the exact ground state of
the kinetic Hamiltonian supplemented by the three-body interaction term [55]

N
V= Z 6 (2 — 2;)0@ (2 — z1). (1.6)

i,j<k

The bosonic m = 1 ground state is similar to the ground state wave function of
the critical S = 1 spin liquid state we introduce in Section 2.4,

N N
0521(2;1,22, .. .,ZN) = Pf( 1 ) H(Zz — Zj) H Zis (17)

SR
which describes the amplitudes of renormalized spin flips

5z 41
2

5§ = S& (1.8)
on sites 1, = e on a unit circle embedded in the complex plane. These
spin flips act on a vacuum where all the N spins are in the S* = —1 state. In
Section 2.4.5, we propose that the momentum spacings between the individual
spinon excitations of this liquid alternate between being odd multiples of %
and being either even or odd multiples of F. (Since the spacings for bosons or
fermions are multiples of QW”, an odd multiply of § corresponds to half-fermion,
and an even multiple to boson or fermion statistics.) When we have a choice
between even and odd, this choice represents a topological quantum number.
The momentum spacings hence span an internal or topological Hilbert space
of dimension 2% when 2L spinons are present, as appropriate for Ising anyons.
These spacings constitute the analog of the Majorana fermion states in the cores
of the half-vortex excitations of the Moore—Read state.

In Chapter 4, we derive a parent Hamiltonian for the S = 1 spin liquid
state (1.5) from the three-body parent Hamiltonian (1.6) of the Moore-Read
state. The steps are similar to those taken for the Haldane—Shastry model,
but technically more involved. The defining condition for the state, i.e., the
recipe used by the quantum Hall Hamiltonian to specify the coefficients of the

polynomial
1 N
Pf i — 24),
(Zi - Zj) 11 =2

i<j

is in the language of the S = 1 spin model given by

N

_ 1o 1) 8=
nglzzn _%(sa)2 T, QM YET) =0 Va. o (L9)
p=1 "

B#a
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As an aside, we also find that the state is annihilated by the operator

— N —\2 o—
B Z %a % 5 —ZL") 552, Za |05 =0V,
ot V(e =1y) 5= (e —15)
By#a B#a

(1.10)

which we do not consider further. A Hermitian and translationally invariant
annihilation operator for the S = 1 spin liquid state (1.5) is given by

N
1
= Qs=17gs=1, (1.11)

Since the state is a spin singlet, i.e., invariant under SU(2) spin rotations, all the
different tensor components of (1.11) must annihilate it individually. In Section
4.5, we obtain the desired parent Hamiltonian for the S = 1 spin liquid state
(1.7),

i S.S5 1 ZNI (5a55)(SaS,) + (5a5,)(SaS5s)
_ 2 A 5 _ ’
2L e —mpl* 20 S (7l = 71) (1l = 11y)
aF#B,y

(1.12)

by projecting out the component of Hy which is invariant under parity, time
reversal, and SU(2) spin rotations. The energy of the ground state (1.7) is given
by

212 N(N? + 5)

S=1 __
Eo— = N2 15

(1.13)
Finally, we use the same methods to obtain vector annihilation operators for
the S = 1 spin liquid state in Section 4.6.

In Chapter 5, we generalize the model to arbitrary spin S. We do, however,
no longer start with a quantum Hall state and its parent Hamiltonian but
generalize the spin liquid states and the defining conditions for S = 5 and S =1,
i.e., the conditions (1.4) and (1.9), directly to higher spins. To generahze the
state vector, we first recall from Section 2.4.4 that the S = 1 spin liquid can be
obtained by taking two (identical) Gutzwiller or Haldane-Shastry ground states
and projecting onto the triplet or S = 1 configuration at each site [44]. This
projection can be accomplished conveniently if we write the Haldane—Shastry
ground state (2.2.3) in terms of Schwinger bosons,

|¢(f)ls> = Z gs(zlr"'vZM) (ljl . iMle;l : bLJM ‘ >

{21, 205w 50w }
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= wi[af, 1] 0), (1.14)

where M = % and the wy’s are those coordinates on the unit circle which are
not occupied by any of the z;’s. The S = 1 spin liquid state (1.7) can then be

written
w5 = (e [a b)) o) (1.15)

To generalize the ground state to arbitrary spin S, we just take 2S5 (identi-
cal) copies Haldane-Shastry ground state, and project at each site onto the
completely symmetric representation with total spin S. In terms of Schwinger
bosons,

) = (e [aT,bT])QS 0) - (1.16)

This state is related to bosonic Read-Rezayi states [119] in the quantum Hall
system. In Section 5.2, we verify that the state is annihilated by the operator

W=7 inB(S;)”SB, QS [yS) =0 Va. (1.17)
=1 "*

B#a

In Section 5.3, we follow the same steps as for the S = 1 state to construct a
parent Hamiltonian for the spin S state (1.16), and obtain

N2 — a2
N
_ 1 3 (5055)(Sa8,) + (5a5,)(SaSs) |
A5+ 125 +3) & (e = 1) — 1)
aFf,y
(1.18)
The energy eigenvalue is given by
2 2 2

BS = QLS(S—&-l) N(N +5). (1.19)

N2 2S5+ 3 12

This is the main result we present. In Section 5.4, we construct the vector
annihilation operators

1
71504 (SaSﬁ) ,

1 +
s_ 1 Na T8 |. _
Da_QEB " [I(Saxsﬁ)+(5+1)5ﬁ T

o — 18
B#a

DI y§)y=0 Va, (1.20)

and



8 1 Introduction and summary

Ai _ Z Sa(saSﬁ) + (SaSﬁ)Sa +2(S+ 1) Sﬁ

_ 2
B#a
+ Z 1 ~ (84855)84(8455) + (5455)54(545p)
5= (o —=1p) (00 = 1) S+1
Bv#a
+2(S+2) S4(S58,) — S5(SaS,) — (S455)S |,
ASS) =0 VYau (1.21)

In Section 5.5, we evaluate the parity and time reversal invariant scalar operators
S DS'DS and 38,45 (1.22)
o (07

and find that both of them reproduce the model (1.18). The factorization of H*
is terms of DiT and Di shows that |¢05> is not just an eigenstate of (1.18),
but also a ground state. Numerical work [141] indicates that |¢§) is the only
ground state of |13 ). In Section 5.6, we show that the model (1.18) reduces to
the Haldane—Shastry model if we take S = %

We conclude with a brief discussion of several unresolved issues as well as
possible generalizations of the model in Chapter 6. These include the quest for
integrability, the correctness and universality of our assignments for the SU(2)
level k£ = 2S5 anyon-type momentum spacings of the spinon excitations and the
feasibility of applications as protected cubits in quantum computation. We out-
line how to generalize the model to symmetric representations of SU(n), where
the non-abelian statistics of the spinons appears to have no correspondence in
a quantum Hall system.



Chapter 2
Three models and a ground state

2.1 The Laughlin state and its parent Hamiltonian

Laughlin’s theory [95, 71, 63, 94, 116, 18] for a series of fractionally quan-
tized Hall states is first and foremost the key to an explanation for the exper-
imentally observed, fractionally quantized plateaus in the Hall resistivity of a
spin-polarized, two-dimensional electron gas realized in semiconductor inversion
layers [145, 19, 21, 153, 116]. For our purposes here, however, we will view it
primarily as an exact model, that is, a ground state which supports fractionally
quantized excitations, and a model Hamiltonian for which this ground state is
exact.

We will first review the theory in a planar geometry with open boundary
conditions, and then turn to the spherical geometry, which will turn out to be
the relevant geometry for the mapping of quantized Hall system onto a spin
chain. We begin with a review of Landau level quantization in the plane.

2.1.1 Landau level quantization in the planar geometry

To describe the dynamics of charged particles (e.g. spin-polarized electrons) in

a two-dimensional plane subject to a perpendicular magnetic field B = —Be,,
it is convenient to introduce complex particles coordinates z = x + iy and
z = — iy [91, 7]. The associated derivative operators are

0 1/0 0 0 1/0 0

= (=), ==Z(=—+i—]. 2.1.1

9z 2 (ax 8y>7 0z 2 (3:17 * 8y) (2.1.1)

Note that hermitian conjugation yields a — sign,

(;Z)T _ _%. (2.1.2)
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We further define the complex momentum

. . 0 _ . .. 0
p=px+ipy = 72171%7 D=px—ipy = 72171%. (2.1.3)
The single particle Hamilton operator is obtained by minimally coupling the
gauge field to the canonical momentum,

1

H=_—
2M

(p+ ZA)Q, (2.1.4)

where M is the mass of the particle and e > 0. In the symmetric gauge A =
%B T X e,, and with the definition of the magnetic length

he
=4/ 2.1.
B’ (2.1.5)
we write
T e 2N - LY
o |\ Px T gpY Py = 5p®

1 [, ih - in
oM {% <p_2l2z>+J P op*

e ik
Tam \P Tt P Tt

h2

where R and & denote the real and imaginary part, respectively. In the last line,
we have introduced the ladder operators [101, 38, 7!

l 0 1 l 0 1
= — o —_— T e — ) PR
a 7 <282 + 572 z> , a 7 ( 25‘2 + 5 z) , (2.1.7)

which obey
[a,al] = 1. (2.1.8)

With the cyclotron frequency w. = eB/Mc and (2.1.8) we finally obtain

1 We have not been able to find out who introduced the ladder operators for Landau
levels in the plane. The energy eigenfunctions were known since Landau [91]. MacDon-
ald [101] used the ladder operators in 1984, but neither gave nor took credit. Girvin
and Jach [38] were aware of two independent ladders a year earlier, but neither spelled
out the formalism, nor pointed to references. It appears that the community had been
aware of them, but not aware of who introduced them. The clearest and most complete
presentation we know of is due to Arovas [7].
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" 1
H=hw.|aa+ 5 (2.1.9)

The kinetic energy of charged particles in a perpendicular magnetic field is hence
quantized like a harmonic oscillator. The energy levels are called Landau levels.

It is convenient to write the ladder operators describing the cyclotron vari-
ables as

a=+V2lexp <—4;22z> % exp <—|—4122z) , (2.1.10)

af = —V2lexp <—|—4§22z> % exp <—4§222) , (2.1.11)

and introduce a second set of ladder operators for the guiding center variables,
b= +V2lexp (—4;222) % exp (—1—4}222’) , (2.1.12)

bl = —V2lexp <—|—4§sz> % exp (—4;222> . (2.1.13)

They likewise obey
[b,b1] =1, (2.1.14)

and commute with the cyclotron ladder operators:
[a,b] = [a,b] = 0. (2.1.15)
A calculation similar to the one presented above for H yields
L=rxp="h(b'b—ala)e, (2.1.16)

for the canonical angular momentum around the origin. (The kinematical an-
gular momentum is given by the afa term in (2.1.16)).

Since the angular momentum (2.1.16) commutes with the Hamiltonian
(2.1.9), we can use it to classify the vastly degenerate states within each Landau
level. Specifically, we introduce the basis states

In, m) = % \/%(aT)"(bT)m 10,0), (2.1.17)

where the vacuum state is by definition annihilated by both destruction opera-
tors,

a]0,0) = b0,0) = 0. (2.1.18)
Solving (2.1.18) yields the real space representation
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0l2) = d02,2) = (10.0) = -z oxp (7). (2.1.19)

(In the following, we omit Zz from the argument of wave functions as a choice of
notation.) The basis states (2.1.17) are trivially eigenstates of both H and L,,

H|n,m) :hwc<n+;>

L, |n,m) = h(m —n) |n,m) (2.1.20)

The particle coordinate and momentum are given in terms of the ladder oper-
ators by

z=V2(a+b), p=—— (a—0bl). (2.1.21)

This implies that we can write a complete, orthonormal set of basis states in
the lowest Landau level (n = 0) as

dm(z) = (r|0,m)
1 m B
= ﬁ(bT) $o(z, Z)

1 Tym 1 2
W(G‘Fb ) exp —@‘ZJ

1 mexp (5P (2122
= xp | ——= . 1.
V2mtlem] [mtl AT
These states is describe narrow rings centered around the origin, with the radius

determined by

0 2 L
Zlon@P| 2o,

T="m

which yields r,, = v/2ml. Since there are also m states inside the ring, the areal

degeneracy is
number of states m 1

= = 2.1.2
area w2, 2ml?’ ( 3)

The magnetic flux required for each state,

2mhe

21l’B = =,
is hence given by the Dirac flux quantum. This implies that in each Landau
level, there are as many single particle states in a given area as there are Dirac
quanta of magnetic flux going through it. In the following, we set [ = 1, and no
longer keep track of wave function normalizations.

The N particle wave function for a filled lowest Landau level (LLL) on a
circular disk is obtained by antisymmetrizing the basis states (2.1.22),
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N
(z1,..on) = A{e0z ey ) He—%IZiF
i=1

N N
1 2
= H(zl —zj) He‘z‘zil . (2.1.24)
i<j i=1

The most general form for the single particle wave function in the lowest Landau
level is

Y(z) = flz) e 1127, (21.25)
where f(z) is an analytic function of z. Since % (z) is annihilated by the destruc-
tion operator a, the energy is trivially %hwc The most general N particle state
in the LLL is given by

N 2
1
w(zlw'sz):f(zla"'va)Heizlm‘ ) (2126)

=1

where f(z1, ..., 2zy) is analytic in all the z’s, and symmetric or antisymmetric for
bosons or fermions, respectively. If we impose periodic boundary conditions [70],
we find that ¥(z1, 29, ..., 2n), when viewed as a function of z; while zo,...,2n5
are parameters, has exactly as many zeros as there states in the LLL, i.e., as
there are Dirac flux quanta going through the unit cell or principal region. If
¥(z1,...,2n) describes fermions and is hence antisymmetric, there will be at
least one zero seen by z; at each of the other particle positions. The most general
wave function is hence

N N
Uz, an) = Pla, o) [[ (= z) [ e 750, (2.1.27)
1<J =1

where P is a symmetric polynomial in the z;’s. In the case of a completely filled
Landau level, there are only as many zeros as there are particles, which implies
that all except one of the zeros in z; will be located at the other particle positions
29, ...,2zn. This yields (2.1.24) as the unique state for open boundary conditions.
For periodic boundary conditions, there is one additional zero as there cannot be
a zero seen by z1 at z1. The location of this zero, which Haldane and Rezayi [70]
refer to as the center-of-mass zero, encodes the information about the boundary
phases a test particle acquires as it is taken around one of the meridians of the
torus.

To elevate the most general LLL state (2.1.26) into the (n + 1)-th Landau
level, we only have to apply (aT)n to all the particles in the LLL,
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N n
:Heii‘ziﬁn <2682; 21') f(Zl,...,ZN). (2128)

i=1 i=1 ¢

The energy per particle in this state is fuw, (n + %)

2.1.2 The Laughlin state

The experimental observation which Laughlin’s theory [95] explains is a plateau
in the Hall resistivity of a two-dimensional electron gas at a Landau level filling
fraction v = 1/3. The filling fraction denotes the number of particles divided
by the number of number of states in each Landau level in the thermodynamic

limit, and is defined through

1 9Ng
o= (2.1.29)

where Ng is the number of Dirac flux quanta through the sample and N is
the number of particles. For a wave function at v = 1/3, we consequently have
three times as many zeros seen by z; as there are particles, and the polyno-
mial P(z1,22,...,2n) in (2.1.27) has two zeros per particle. The experimental
findings, as well as early numerical work by Yoshioka, Halperin, and Lee [159],
are consistent with, if not indicative of, a quantum liquid state at a preferred
filling fraction ¥ = 1/3. Since the kinetic energy is degenerate in each Landau
level, such a liquid has to be stabilized by the repulsive Coulomb interactions
between the electrons. This implies that the wave function should be highly
effective in suppressing configurations in which particles approach each other,
as there is a significant potential energy cost associated with it. We may hence
ask ourselves whether there is any particular way of efficiently distributing the
zeros of P(z1,z29,...,2y) in this regard.

Laughlin’s wave function amounts to attaching the additional zeros onto
the particles, such that each particle coordinate zs,...,2zx becomes a triple
zero of z1 when (21, 22, ..., 2n) is viewed as a function of z; with parameter
29, ...,zy. For filling fraction v = 1/m, where m is an odd integer if the particles
are fermions and an even integer if they are bosons, he proposed the ground
state wave function

N N
Y1, o) = [J (e =z [ e 420 (2.1.30)
i<j i=1

There are hence no zeros wasted—all of them contribute in keeping the parti-
cles away from each other effectively, as v, vanishes as the m-th power of the
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distance when two particles approach each other. This is the uniquely defining
property of Laughlin’s state, and also the property which enabled Haldane [63]
to identify a parent Hamiltonian, which singles out the state as its unique and
exact ground state. We discuss the Hamiltonian in Section 2.1.6 below. The
wave function (2.1.30) describes an incompressible quantum liquid, as the con-
struction is only possible at filling fractions v = 1/m.

One of the assumptions of the theory is that we can neglect transitions into
higher Landau levels, as the Landau level splitting Aw. is much larger then
the potential energy per particle, a condition met by the systems amenable
to experiment. Formally, the LLL limit requires w. — oo while keeping the
magnetic length [? constant, which is achieved by taking M — 0. The LLL
limit is hence a zero mass limit.

Even within this limit, which we assume to hold in the following, the Laugh-
lin state (2.1.30) is not the exact ground state for electrons with (screened)
Coulomb interactions at filling fraction v = 1/3. It is, however, reasonably close
in energy and has a significant overlap with the exact ground state for finite
systems. The difference between the exact ground state and Laughlin’s state is
that in the exact ground state, the zeros of P(z1, 29, ..., zn) are attached to the
particle coordinates, but do not coincide with them [71, 43]. At long distances,
the physics described by both states is identical. In particular, the topologi-
cal quantum numbers of both states, such as the charge and the statistics of
the (fractionally) charged excitations, or the degeneracies on closed surfaces of
genus one and higher, are identical.

The Laughlin state can be characterized through the notion of “super-
fermions” [56]. For fermions (bosons), the relative angular momentum is quan-
tized as Al, where [ is an odd (even) integer, due to the antisymmetry (symme-
try) of the wave function under interchange of particles. In the LLL, the relative
angular momentum between pairs of fermions can only have components with
[ =1,3,5,..., but no negative values. If we interchange the particles through
winding them counterclockwise around each other, these components acquire a
phase factor e*™!. The smallest component hence acquires a phase 7, as required
by Fermi statistics. For the Laughlin state (2.1.30), the smallest component of
relative angular momentum is [ = m, and the phase this component acquires
upon interchange is mm, while only a phase 7 is required by Fermi statistics.
In this sense, the particles are “superfermions” for m odd, m > 1. In the exact
ground state for Coulomb interaction, the electrons are “approximate super-
fermions”.

For completeness, we wish to mention that there is a variant of Haldane’s
parent Hamiltonian [63] for the planar geometry, due to Trugman and Kivel-
son [144]. They noted that since the Laughlin state (2.1.30) contains a term
(z; — z;)™ for each pair, it is annihilated by the short range potential interac-
tion

N
v =3 (93) "0 - 2) (2.1.31)

i<j
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for m odd, and

N
vim =37 (v2) "0 - 2y) (2.1.32)
i<j
for m even, as well as by the same terms with any smaller power of the Lapla-
cian. If we combine these terms with the kinetic terms (2.1.9), the resulting
Hamiltonian will single out (2.1.30) as the exact and unique ground state.

2.1.3 Fractionally charged quasiparticle excitations

Laughlin [95] created the elementary, charged excitations of the fractionally
quantized Hall state (2.1.30) through a Gedankenexperiment. If one adiabat-
ically inserts one Dirac quantum of magnetic flux through an infinitely thin
solenoid at a position &, and then removes this flux quanta via a singular gauge
transformation, the final Hamiltonian will be identical to the initial one. The
final state will hence be an eigenstate of the initial Hamiltonian as well. The
adiabatic insertion of the flux will induce an electric field
j{Eds:Eq,-?wr:}%

-, (2.1.33)

which in turn will change the canonical angular momentum L, around £ by

e o e
AL,= [ F,-rdt=— [ —dt=—-¢¢g =h. 2.1.34

/ o r 2me ) Ot 27c %o ( )
If we choose a basis of eigenstates of angular momentum around &, the basis
states evolve according to

(2= &)™ e 1 o (z - gmHt em il (2.1.35)

Note that the kinematical angular momentum, which is given by the second
term in (2.1.16), has eigenvalue —%in, where n labels the Landau level. In this
process, it remains zero as the states remain in the lowest Landau level—as
there are no states with positive kinematical angular momentum, the insertion
of the flux just shifts the states within the LLL.

The Laughlin ground state (2.1.30) evolves in the process into

N N N
P (2155 2N) = H(Zi =& H(Zi —z)™ Hejlm ) (2.1.36)
=1 i<j i=1

which describes a quasihole excitation at £. It is easy to see that if the electron
charge is —e, the charge of the quasihole is +e/m. If we were to create m
quasiholes at £ by inserting m Dirac quanta, the final wave function would be
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N N N
E) —_— Zv2
G o) = [[ -0 [[G -z [Te =, (2137)
i=1 i<j =1

i.e., we would have created a true hole in the liquid, which is screened as all the
other particles. Since the hole has charge +e, the quasihole has charge +¢/m.
One may view the quasihole as a zero in the wave function which is not attached
to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge —e/m and
is created by inserting the flux adiabatically in the opposite direction, thus low-
ering the angular momentum around some position £ by A, or alternatively, by
removing one of the zeros from the wave function. To accomplish this formally,
we first rewrite (2.1.36) in terms of ladder operators:

N N
e (21, an) =[] (\/ibj - 5) [ =z He—%\zﬂ"’. (2.1.38)

i=1 i<j

The insertion of a flux quanta in the opposite direction, or the lowering of
angular momentum around &, will then correspond to the Hermitian conjugate
operation. Laughlin [94] hence proposed for the quasielectron wave function

N N N ,
’(/)?E(Zl, .. ~7ZN) = H (\/ibz — g) H(ZZ — Zj)m Heii‘zi‘
i=1

i=1 i<j

N o N s A\
= § e~ 1zl H (28zi —§> H(z, —z;)™. (2.1.39)

i=1 i=1 i<j

While the quasihole excitation (2.1.36) is still an exact eigenstate of Haldane’s
parent Hamiltonian, this is not true for the quasielectron (2.1.39). The problem
here is that while there is a clean and unique way of introducing an additional
zero (we just put it somewhere), there is no such clean way of removing one.
One can view the quasielectron as a region, in which n electrons nearby share
2n — 1 zeros attached to the particles. In other words, one zero is missing, but
not from any specific electron—rather, the dearth is distributed among all the
electrons nearby. The charge of the quasielectron is accordingly not as localized
as it is for the quasihole.

The plateau in the observed Hall resistivity occurs because the current in
the experiments is carried by edge states, which are sensitive only to the topo-
logical quantum numbers of the state. In the vicinity of one of the prefered
filling fractions v = 1/m, the excess density of electrons yields to a finite den-
sity of quasielectrons or holes, which get pinned by disorder and hence do not
contribute to the transport properties.
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counterclockwise interchange yields:  |¢) — €'?|¢)
m relative angular momentum: [, — [, — %0

Fig. 2.1 Fractional statistics in two dimensions. The many particle wave function ac-
quires a statistical phase 6 whenever we interchange two anyons conterclockwise.

2.1.4 Fractional statistics

Possibly the most interesting property of fractionally quantized Hall states is
that the quasiparticle excitations obey fractional statistics [72, 6]. The possi-
bility of fractional statistics [99, 148, 149, 156, 9, 34, 39, 150, 83] arises in two
space dimensions because the space of trajectories for two identical particles
consists of an infinite number of topologically distinct sectors, corresponding to
the number of times the particles wind around each other. The laws of quantum
mechanics allow us to assign distinct phases to paths belonging these sectors,
which only need to satisfy the composition principle.

In three or more dimensions, by contrast, there are only two topological dis-
tinct sectors, corresponding to interchanging the particles or not interchanging
them. The group which classifies all the topologically distinct trajectories is
hence the permutation group, and since amplitudes are complex numbers, the
possibilities for the quantum statistics are limited to the one-dimensional repre-
sentations of the permutation group. There are only two such representations,
the symmetric and the antisymmetric representation. These correspond to the
familiar choices of Bose and Fermi statistics.

In two dimensions, the group is the braid group. The one-dimensional rep-
resentations are obtained by assigning an arbitrary phase 7(7;) = €' for each
counterclockwise interchange T; of the two particles, with statistical parame-
ter 6 €] — m, w]. Particles interpolating between the familiar choices of bosons
(0 = 0) and fermions (6 = 7) are generically called anyons. We will see in Sec-
tion 2.3.3 that non-Abelian generalizations exist, where successive interchanges
of anyons do not commute.

The most direct physical manifestation of the fractional statistics is the quan-
tization of the relative angular momentum of the anyons (see Figure 2.1). In
three dimensions, there are three generators of rotations, and the relative angu-
lar momentum is quantized as Al, with [ an even integer for bosons and an odd
integer [ odd for fermions. In two dimensions, the wave function may acquire a
phase exp(%@ <p) as two anyons wind counterclockwise around each other with
winding angle ¢, which implies that the relative angular momentum is quantized
as

L =h (—9 + 2n> 7 (2.1.40)
™
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where n is an integer. Note that the possibility of fractional statistics exists
only for particles which are strictly two-dimensional, like vortices in an (ap-
proximately) two-dimensional quantum fluid.

The only established realization of fractional statistics is provided by the
quasiparticles in the fractionally quantized Hall effect [72, 6]. When Laugh-
lin introduced the quasiparticles, he introduced them as localized defects or
more precisely, vortices in an otherwise uniform quantum liquid. To address the
question of their statistics, however, it is propitious to view them as particles,
with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative
angular momentum in an “orbit” centered at the origin. Since the quasiholes
have charge e* = +¢/m, the effective flux quantum seen by them is

o = = mPy, (2.1.41)
and the effective magnetic length is

he

= = l. 2.1.42
S5 =Vm (2.1.42)

We expect the single quasihole wave function to describe a particle of charge e*
in the LLL, and hence be of the general form

$(&) = f(€) e~ T¢I, (2.1.43)

The complex conjugation reflects that the sign of the quasihole charge is reversed
relative to the electron charge —e.

The electron wave function for the state with two quasiholes in an eigenstate
of relative angular momentum is given by

1/}(2’1,...,2:1\[) :/D[gl,fz] ¢p,m(f_1,§_2)¢?f22(21,~-~,ZN) (2144)

with
- = — — 2
Spn(€1,8) = (& — &P [ emaleel, (2.1.45)
k=1,2
where p is an even integer, and
2
Y (21, an) = (G — &) [ e malel
k=1,2
N N N ,
1z,
: H(Zi —&)(zi — &) H(Zi —z;)™ He alzil”, (2.1.46)
=1 i<j i=1

The quasihole coordinate integration extends over the complex plane,
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/D[{l,gg] = / . / dxydydzadys,

where & = x1 4+ iy; and & = 9 + iys.

This needs explanation. We see that both ¢, (&1, &2) and Yo, (21, 2N)
contain multiple valued functions of & — & and & — &, respectively, while the
product of them is understood to be single valued. The reason for this is that
the Hilbert space for the quasiholes at &; and & spanned by ¢?:22 (z1,--+,2N)
has to be normalized and is, apart from the exponential, supposed to be analytic
in & and &. At the same time, we expect ¢, m(£1,&2) to be of the general form
(2.1.41), i.e., to be an analytic function of &1, & times the exponential.

The form (2.1.45) of the quasihole wave function including its branch cut, is
indicative of fractional statistics with statistical parameter § = 7/m. This indi-
cation, however, is by itself not conclusive, as it is possible to change the repre-
sentation of the wave function through singular gauge transformations [149, 72],
where one removes or adds flux tubes with a fraction of a Dirac flux quanta to the
particles, and hence turn an anyonic representation into a bosonic or fermionic
one and vice versa. The physically unambivalent quantity is the relative angular
momentum of the quasiholes, which for (2.1.45) is given by

1
Lea = —h <p + > . (2.1.47)
m

Comparing this with (2.1.40) yields 6 = w/m. This result agrees with the results
of Halperin [72] and of Arovas, Schrieffer, and Wilczek [6], who calculated the
statistical parameter directly using the adiabatic theorem [16, 126, 152, 151].

2.1.5 Landau level quantization in the spherical geometry

The formalism for Landau level quantization in a spherical geometry, i.e., for
the dynamics of a charged particle on the surface of a sphere with radius R, in
a magnetic (monopole) field, was pioneered by Haldane for the lowest Landau
level [63, 29], and only very recently generalized to higher Landau levels [48].
We will content ourselves here with a review of the formalism for the lowest
Landau level.

Following Haldane [63], we assume a radial magnetic field of strength

hesg

The number of magnetic Dirac flux quanta through the surface of the sphere is

(I)tot o 47TRQB
dy  2mhc/e

= 250, (2.1.49)
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which must be integer due to Dirac’s monopole quantization condition [23]. In
the following, we take h = ¢ = 1.
The Hamiltonian is given by

2
A We 49

H=_-—"_ = 2@ 2.1.50
OMRZ ~ 2s9 ( )

where w. = eB/M is the cyclotron frequency,
A=7rx(—iV+eA(r) (2.1.51)

is the dynamical angular momentum, r = Re,, and V x A = Be,. With (A.4)-
(A.6) from Appendix A we obtain

. 0 1 0
A=-i <e¢80 — egsin@&p) +eR (e, x A(r)). (2.1.52)

Note that
e A =Ae, =0, (2.1.53)

as one can easily verify with (A.5). The commutators of the Cartesian compo-
nents of A with themselves and with e, can easily be evaluated using (2.1.52)
and (A.3)—(A.5). This yields

[AT, AT] =177 (A% — sgef), (2.1.54)

[Ai,e{] = etk ek (2.1.55)

T

where 4, j,k = x,y, or z, and e is the k-th Cartesian coordinate of e,. From
(2.1.53)—(2.1.55), we see that that the operator

L= A+ spe; (2.1.56)
is the generator of rotations around the origin,
[L', X7] =ieV*X* with X =A, e, or L, (2.1.57)

and hence the angular momentum. As it satisfies the angular momentum alge-
bra, it can be quantized accordingly. Note that L has a component in the e,
direction:

Le, =e. L = s. (2.1.58)

If we take the eigenvalue of L? to be s(s + 1), this implies s = s¢9 + n, where
n =0,1,2,... is a non-negative integer (while s and sy can be integer or half
integer, according to number of Dirac flux quanta through the sphere).

With (2.1.56) and (2.1.53), we obtain

A*=L%-s2 (2.1.59)
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The energy eigenvalues of (2.1.50) are hence

_ We 2
En - 280 [S(S + 1) SO}

We

5 [(2n+1)sg + n(n+1)]
S0

o Kn+ ;) . "(’;s“zl)] , (2.1.60)

The index n hence labels the Landau levels.

To obtain the eigenstates of (2.1.50), we have to choose a gauge and then
explicitly solve the eigenvalue equation. We choose the latitudinal gauge

A= —ey,:—; cot 6. (2.1.61)

The singularities of B = V x A at the poles are without physical significance.
They describe infinitly thin solenoids admitting flux so®g each into the sphere
and reflect our inability to formulate a true magnetic monopole.

The dynamical angular momentum (2.1.52) becomes

) 0 1 o .
A=-i {ecpae —e g (&p —1isg COSG)] . (2.1.62)
With (A.5) we obtain
2 _ 1 0 (0,0 1 (9 i
A° = 090 5111089 5076 \9p isgcosf | . (2.1.63)

To formulate the eigenstates, Haldane [63] introduced spinor coordinates for
the particle position,

0 i .0 ip
U = €08 5 exp <2> , v =sin g exp <—2> , (2.1.64)

such that
m

e = Qu,v) = (u,v) o-(_), (2.1.65)
T
where o = (0x, 0y, 0,) is the vector consisting of the three Pauli matrices

01 0 —i 1 0
O’x—<1 0)’ O'y—<i 0), O'Z—<O _1>. (2.1.66)

In terms of these, a complete, orthogonal basis of the states spanning the
lowest Landau level (n =0, s = s¢) is given by
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Yy o(u,v) = w*+ e (2.1.67)
with
m=-s,s+1,...,s.
For these states,
L fn,O = m,(/}'Z'L,Oa
S 1 S
H m,0 = iwc ¢m70~ (2168)

To verify (2.1.68), we consider the action of (2.1.63) on the more general basis

states
9 s+m 0 s—m )
s () = (cos 2) (Sm 2) ¢ilm=p)e

TP uSTMmSTmP - for p < 0,
= (2.1.69)
aP uSTmop psTm, for p > 0.
This yields
scos® —m\?> spcos —m+p 2
A2 s — N LA s
Pmp ls ( sin @ ) + ( sin @ ) Pm.p
2(scos—m+p)(p—ncos) — (p>—n2cos? )|
= |s+ ) ¢m P
sin“ 6 ’
(2.1.70)

For p = n = 0, this clearly reduces to A2 m.0 = 8Um o, and hence (2.1.68).
The normalization of (2.1.67) can easily be obtained with the integral
1 (s+m)! (s —m)!

E dQ ﬂs+m/1_)57mlus+m’1187m = (23 T 1)' (;m,m’, (2171)

where dQ2 = sin 6 df d¢.

To describe particles in the lowest Landau level which are localized at a point
Q(«, ) with spinor coordinates («, ),

Qa, B) = (a,ﬁ)a@), (2.1.72)
Haldane [63] introduced “coherent states” defined by

{Q(OL, 5) L} 1!’?@,,8),0(“7 U) =S qzzj(sa,,@),O(uv U)‘ (2173)
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In the lowest Landau level, the angular momentum L can be written

1 B
in(u,v)a' 5 | (2.1.74)

v,

Note that u,v may be viewed as Schwinger boson creation, and a%, % the cor-
responding annihilation operators (see Section 2.4.3). The solutions of (2.1.73)
are given by

¢(Soc,ﬂ),0 (u,v) = (Qu+ 60)287 (2.1.75)
as one can verify easily with the identity

(aob)(cod) =2(ad)(ch) — (ab)(cd). (2.1.76)

where a, b, ¢, d are two-component spinors.

Haldane [63] further introduced two-particle coherent lowest Landau level
states defined by

{Q(Oz, 6) (Ll + L2>} w(s(;];@)’o[ua U] = .7 w(siﬁ)’o[uv U]? (2177)
where [u,v] := (u1, uz,v1,v2) and j is the total angular momentum,
(L + Lo)* ¢ g olu o] = GG+ D)0 5 olus o], (2.1.78)

The solution of (2.1.77) is given by

w?&{ﬁ),o[u’v] = (u1vy — upvy)** ™7 H (au; + Bug). (2.1.79)
i=1,2

It describes two particles with relative momentum 2s — j precessing about their
common center of mass at Q(q, 5).

Since 0 < j < 2s, the relative momentum quantum number [ = 2s — j
has to be a non-negative integer. The restriction to non-negative integers is a
consequence of Landau level quantization, and exists in the plane as well, as
we discussed in Section 2.1.2. For bosons or fermions, [ has to be even or odd,
respectively. This implies that the projection Il into the lowest Landau level of
any rotationally invariant operator V (r; - r2), such as two particle interactions,
can be expanded as

2s

oV (ry - 7o)l = » Vi Pas—i(Ly + Ly), (2.1.80)
l

where the sum over [ is restricted to even (odd) integer for bosons (fermions), V;
denotes the so-called pseudopotential coefficients, and P;(L) is the projection
operator on states with total momentum L? = j(j + 1).
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As mentioned, this formalism was very recently generalized to include higher
Landau levels as well [48]. The key insight permitting this generalization was
that there are two mutually commuting SU(2) algebras with spin s, one for the
cyclotron variables and one for the guiding center variables. These algebras are
analogous to the the two mutually commuting ladder algebras a,a’ and b, b' in
the plane, which we introduced in Section 2.1.1.

2.1.6 The Laughlin state and its parent Hamiltonian on the sphere

In analogy to (2.1.30), Haldane [63] writes the Laughlin v = 1/m state for N
particles on a sphere with 2sg = m(N — 1) as

N

Y [u,v] = H(Uivj —u;v;)™. (2.1.81)

i<j

Since the factors (u;v; — u;v;) commute with the total angular momentum

N
Liw=Y_ L, (2.1.82)
i=1

(2.1.81) is obviously invariant under spacial rotations around the sphere:
Ltotwm =0. (2183)

The Laughlin droplet wave function centered at Q(a, 3) can be recovered by
multiplying ,,[u, v] by a factor

N

H(@Ui + Buy)",

i=1

and then taking the limit n — co, R — oo, while 47R?/n = 27l? = const.,
where [? is the magnetic length (2.1.5).

As in the plane, the uniquely specifying property of the Laughlin state
(2.1.81) is that the smallest component of relative angular momentum is m,
which is even for bosons and odd for fermions. Haldane [63] constructed a model
Hamiltonian, which, together with the kinetic Hamiltonian (2.1.50), singles out
(2.1.81) as exact and unique zero energy ground state, by assigning a finite en-
ergy cost to the components of angular momentum smaller than m. With the
most general two-particle interaction Hamiltonian given by

N 2s
Ho=Y" { ViPoo 1(Li + Lj)} , (2.1.84)
l

i<j
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where the values of [ are restricted to even (odd) integers for bosons (fermions)
and Py, is as defined in (2.1.80), Haldane’s Hamiltonian amounts to taking

1 for I < m,
= 2.1.
Vi {OforlZm. (2.1.85)

For all practical purposes, we need to rewrite (2.1.84) in terms of boson or
fermion creation or annihilation operators,

CEED DD DI DD DI S

mM1=—8 Ma2=—8 M3=—8 My——3S8
2s

. E (s,m1; 8,m2|2s — I,m1 +ma) Vi (2s — [, m3 + myls, ms; s, my),
1=0

(2.1.86)

where a,, annihilates a boson or fermion in the properly normalized single
particle state

Ypo(u,v) = \/477 G ffn—; 2!_ )] uSt My, (2.1.87)

and (s,m1;s, malj, m1 + ma) etc. are Clebsch—-Gordan coefficients [12]. Essen-
tially, we take two particles with L, eigenvalues ms and my, change the basis
into one where ms + my4 and the total two particle momentum 2s — [ are re-
placing the quantum numbers m3 and my4, multiply each amplitude by V;, and
convert the two particles states back into a basis of L, eigenvalues m; and mso.

The fractionally charged quasihole and quasielectron excitations of the Laugh-
lin state (2.1.81) localized at €2(«, 3) on the sphere are given by

N
(e [t H Bui — av;) H(Uz‘vj — uyv;)" (2.1.88)
=1 i<j
and
N N
Voot v] = H(ﬂau av ) [T (wiv; = wjo)™, (2.1.89)
7 K3 i ]

which increase or decrease the number of flux quanta 2sg through the sphere
by one, and decrease or increase («, ) Liot by %N

Due to the formal simplicity, the sphere is particularly well suited to formu-
late the hierarchy of quantized Hall states, where all odd-denominator filling
fractions can be obtained through successive condensation of quasiparticles into
Laughlin-type fluids [63, 72, 42].
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2.2 The Haldane—Shastry model
2.2.1 The 1/7% model of Haldane and Shastry

The Haldane—Shastry model [65, 124, 74, 67, 125, 69, 81, 82, 137, 96, 14, 13, 52]
is one of the most important paradigms for a generic spin % liquid on a chain.
Consider a spin % chain with periodic boundary conditions and an even number
of sites N on a unit circle embedded in the complex plane:

1

N sites with spin 5 on unit circle:

na:ei%ﬂa witha=1,...,N

The 1/r?-Hamiltonian
2 N
2 S.S
HYS — (W> E 7527 (2.2.1)
N a<pB ‘na - 77B|

where |n, — 1| is the chord distance between the sites o and 3, has the exact
ground state

6% = D W(ezm) S-S M 1) (22.2)
{#z1,-s2m } all N spins |

where the sum extends over all possible ways to distribute the M = % T-spin
coordinates z; on the unit circle and

M M
wgs(z1,227...,zM):H(zi—zj)2 Hzl (2.2.3)
i<i i=1
The ground state has momentum
po:ng, (2.2.4)

where we have adopted a convention according to which the “vacuum” state
[44 ... 1) has momentum p = 0 (and the empty state |0) has p = 7(IN —1)) and
energy

_%:—H(N+5>. (2.2.5)

We will verify (2.2.4) and (2.2.5) in Sections 2.2.3 and 2.2.4, respectively.
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2.2.2 Symmetries and integrability

The Haldane—Shastry Hamiltonian (2.2.1) is clearly invariant under space trans-
lations (rotations of the unit circle), time reversal, parity, and global SU(2) spin
rotations generated by

N
Stot = Z So, [H™, Stot] = 0. (2.2.6)
a=1

The total spin trivially satisfies the standard commutation relations for angular
momentum, . . -
[Stlotv Sgot] =i SE,. (2.2.7)

The model possesses an additional symmetry [69, 60] generated by the rapidity
operator

. N
A=t N Tt g g, [H™ A]=0, (2.2.8)
2 o,B=1 Na — N
ot b

which measures the spin current. It transforms as a vector under spin rotations,
[Sior, ] =i AP, (2.2.9)

Note that even though both S, and A commute with the Hamiltonian, they
do not commute mutually, but generate an infinite dimensional associative al-
gebra with certain defining relations and consistency conditions, the Yangian
Y(sl2) [25, 20]. Since the commutator of the total spin squared with the rapidity
operator does not vanish in general,

(S, A'] = —ie* {8 A}, (2.2.10)

elements of the Yangian algebra connect degenerate eigenstates with different
total spins. With these elements, it is possible to generate all the eigenstates of
the model from all the completely spin polarized eigenstates.

The Yangian symmetry of the model [69, 60] implies significant degeneracies
in the spectrum and hence indicates integrability. The model is not integrable in
the usual sense, however, as the method of quantum inverse scattering [89] is not
applicable to models with longe-range interactions. Talstra and Haldane [138]
have nonetheless succeeded in constructing an infinite set of mutually commut-
ing integrals of motion for the model by using the determinant rather than the
trace of the monodromy matrix. These integrals provide the framework for the
model’s integrability. The integrability is hence only indirectly related to the
Yangian symmetry.

The model is further amenable to exact solution via the asymtotic Bethe
Ansatz [67, 134, 135, 133, 136, 81, 60, 61], even though the application of this
method to models with long-range interactions is likewise heuristic.
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2.2.3 Ground state properties

The ground state (2.2.3) is real (and hence both parity and time-reversal in-
variant), a spin singlet, and can equivalently be obtained by Gutzwiller projec-
tion [59, 35, 103, 79, 58, 105, 36], as we will verify now after evaluating the total
momentum.

Ground state momentum.—To determine the momentum po (in units of in-
verse lattice spacings 1/a) we translate the ground state (2.2.3) counterclockwise
by one lattice spacing around the unit circle,

T [5°) = €™ [95°) - (2.2.11)

With Tz; = €% z;, we find

p027r(2M(M1)

M) =M
N 2+>”’

and hence (2.2.4). Note that the sign of py is irrelevant for (2.2.3), as N is always
even, and pg is 0 or 7. The sign will become significant only in sections 2.2.6
and 2.2.7 below, when we assign spinons momenta for states with N odd.

Singlet property—Since SZ., [1§°) = 0, it suffices to show that [¢§°) is anni-
hilated by Si..:

N
S [U6%) =D _Se > (a2, 2m) ST ST L)
a=1

{z1,...2m}

N
S U Masz2,-zm) SELUST D, (2212)

{z2,..,zm } a=1

—0
since Y& (N, 22, . - ., 2a) contains only powers nt,72,..., 72! and
N
> 0l =Nbpmo mod N. (2.2.13)
a=1

Parity and time reversal invariance.—We begin by showing that §* is real.
With z; = 1/z; and hence

(Zi - Zj)2 = —ZiZj |Zi — 25j|27 (2214)

we write
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M M M
o (21,22, 20) = & e 2% %
j j
i=1

1<j 1<j
M M

=+ ] lzi — = [] G=) (2.2.15)
i<j i=1

where

w2

G(na) = (na) (2-2'16)

_J+1 «aeven
" 1-1 «aodd.

The gauge factor G(z;) effects that the Marshall sign criteria [102] is fulfilled.
Since parity tranforms 7, — 7_o = 7, and hence z; — Zz;, the fact that ¢§*°
is real implies that |1§*®) is invariant under parity. Time reversal transforms [40]

2m|57_

i—=—i, So— -8, I|s,m)—i my,

which implies z; — z;, S+ — =S5, and ||| ... }) = (=)™ |11 ... 7). The basis
states in (2.2.2) hence transform according to

S ST )y S S ). (2.2.17)

Together with the singlet property, this implies that [¢{®) is invariant under
time reversal.

Generation by Gutzwiller projection.—The ground state of the model was first
obtained by Gutzwiller projection from a completely filled one-dimensional band
which in total contains as many spin % fermions as there are lattice sites [59,
79, 58, 105, 36]:

[06%) = Paw [02),  [0) = [] elyel, 10), (2.2.18)
qeT

where the Gutzwiller projector

N
Pow = H (1- chciTchw) (2.2.19)

=1

eliminates configurations with more than one particle on any site and the in-
terval Z contains M = £ adjacent momenta. We will now show that (2.2.18)
is equivalent to (2.2.3). With lattice constant a = 2T, the allowed momenta are

given by integers, ¢ = 0,1,..., N — 1. With

N N
cg = Z ei%ﬂaqcl = Z nlel, (2.2.20)
a=1

a=1

the (unnormalized) single particle momentum eigenstates are given by
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dq(2) = (2lg) = (0] ccf |0) = 29 (2.2.21)

The many particle wave function for M fermions with adjacent momenta g €
T =[q1,q1 + M — 1] is hence given by

M
o1(21, 29, ..., 20m) = I_Iz'f1 ALz = qu‘ H i —2j). (2.2.22)
i=1

1<J

The Gutzwiller state (2.2.18) is given by

|vho°) = Z ¢z(z15- -5 2m) ¢z(wi, ..., war)
(21 r2pg W1 w s }
T T T
ZlT Cont Cund 'LUZM\L |O> (2223)

where the sum extends over all possible ways to distribute the coordinates z;
and wy on mutually distinct lattice sites.

Let Z contain all those M momenta not contained in Z, and wq,...,wys
denote the sites which are not occupied by any of the z;’s. Then

dr(wy, ..., war) = (0] cuy - ca, [ ] €l 10)

qeT
= sign[z; w] - O|chch ...CI,MHCJ;\@
9€T  4el q€l

= sign[z; w] - 0|H0q Cyy oo e zM|O>

= sign|[z; w] ~¢>f*(21, ce s ZM)
M
= sign[z; w] - H ZM o (21, 20, (2.2.24)
i=1
where
sign[z; w] = (0| Cwpy -« - Cowy Copg + - - Coy H c}; H c:; |0) (2.2.25)
qel qeT

is an overal sign associated with ordering the z’s and w’s according to the lattice
sites indices a. Since

sign[z; w] - Cim . cim c:ruli wmi |0) = S (2.2.26)

we may write
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M
vho°) = Z oz (21, ... 20m) 2 HG(Zz) LeSEO D). (2.2.27)
, =1

This is equivalent to (2.2.15).

As an aside, it is very easy to verify the singlet property in the Gutzwiller
formulation (2.2.18) of the ground state. To begin with, filling the same single
particle states with 1 and | spin fermions obviously yields a singlet,

Stot [Yap) = 0. (2.2.28)

The Gutzwiller projector (2.2.19), however, commutes with the local spin oper-
ators and hence also with the total spin,

[PGWa Sa] = [PGW7 Stot] =0. (2229)
Hence

Stot [¢5°) = 0. (2.2.30)

Norm.—The norm of the ground state is [154]

£ e () f 02

{z1,--zp 1 0<g i#£]
NM (2M
QM

(2.2.31)

Relation to the chiral spin liquid—The Haldane—Shastry ground state may
be viewed as the one-dimensional analog of the abelian or S = % chiral spin
liquid [77, 86, 163, 146, 78, 97, 122, 140], which is essentially a Laughlin m = 2
quantized Hall state [95] for spin flips on a two dimensional lattice. The spinons
in the chiral spin liquid were understood to obey half-Fermi statistics long before
this was realized for the Haldane-Shastry model.

2.2.4 Explict solution

For the explict calculation presented here to be applicable to the one- and two-
spinon eigenstates investigated in section 2.2.6 below, we consider wavefunctions
of the form [67, 96, 14, 13]

(21, zm) = (21, oy 2nm) - W8S (21, -y 200)s (2.2.32)

where 9§ is given by (2.2.2) and ¢[z] = ¢(#1,...,2m) a polynomial of degree
strictly less than N — 2M + 2 in each of the z;’s. This implies that the degree
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of 9" is strictly less than N + 1. N can be even or odd. This condition enables
us to use a Taylor expansion when we calculate the action of the Hamiltonian
(2.2.1) on the state. The result is that

H™ [¢p) = 3\7; <A+ g(N2—1)+%(4M2—1)— ];M2> ),  (2.2.33)

provided that ¢ satisfies the eigenvalue equation

M1, 02 2 9 N-3 0
Z<2 382+Zza—zkazj 2 Zjaizj olz] = Ao[2] (2.2.34)

J_
k#]

for A. The derivative operators in (2.2.34) and below are understood to act on
the analytic extension of ¢(z1,...,zp), in which the z;’s are allowed to take
any value in the complex plane. For ¢[z] = 1, (2.2.33) shows that |¢{) is an
eigenstate of H™ with energy Ey given by (2.2.5).

Derivation of (2.2.33) and (2.2.34).—We first use ST = S* +iS¥ to rewrite
(2.2.1) as the sum of a “kinetic” and a “potential” term,

S Z

+ Q- 7 Oz
—, I — 5] 775|2 (Sa S5 +Sa55>~ (2.2.35)

We first evaluate the action of the kinetic term on [¢). Consider first

SIST W)y =S5S5 Y $ngzas. . zm) SESE - SE M)
{z2,....,2m }
{z2,....2m }

where we have implicitly assumed that each spin configuration in the sum over
{#z1,22,...,2m} in (2.2.2) appears only once (and not M! times due to permu-
tations of the z;’s). We write this as

[SOTSEMJ} Ny 225 - -5 20m) = V(Ny 22, - -, Z01)- (2.2.37)
Note in particlular that [S(‘; SﬁT w] (21,22, ..., 2n) vanishes unless 7, equals one
of the z;’s.
The action of the kinetic term on v is given by
o= |3 oo
E 2 Zlye-s "M
oy 70 — 13
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ot 77,8|2 18

M N
:Z Z ¢(217---,ZJ—1J]B7ZJ+1»-~-,ZJVI)' (2.2.38)
5:
ngF#z;

Since the last fraction is a polynomial of degree strictly less than N in S, we
can Taylor expand it around z;,

N— 1

77/1(21;---,777~~- 77 — Zj \Ij(zlv"'azM)

b =y . a ‘ . (2.2.39)
N3 —o : Z Zj

The sum over 3 yields

1 —1
-y B
77,3(77,6’ J2) — Zé_-‘rlAl’ Al - _ Z 772(7704 _ 1)[ 27 (2240)
= |z sl —

NpFz;
where Ao, Ay, and Ag are evaluated with (B.14), (B.9), and (B.2) from Ap-
pendix B, respectively:

AO__Nzl 2 (N-1)(N-5)
= (o —1)? 12 ’
N-1 5
s N -3
Al:_zna—1:_ 2
a=1
N-1
Ap=—) ma=1,
a=1

N
A== niMa—1)"%=0 for2<I<N-1

In the last line, we have used that 12 (1, —1)'~2 vanishes for 77, = 1 and contains
only powers n2,...nN ! for 2 < [ < N—1. Substituion into (2.2.38) and (2.2.39)

yields
M
Sy N30 1,0 v
2] = Z ( 12 % 2 i 0z; + 9% 62? 2

Jj=1
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_ M(N —1)(N —5) N-3<L 2
= o ¥le] 5 Z E— Ple]
J#k
—_———
=M(M-1)
M 2 M

222

S+ Y z V2]

(25 — 2e)(2j — 2m)

j#k j.k,m=1
J#Ek#EMFA]
=2M(M-1)(M—-2)/3
M
0 N-3 90
HS e
+;¢0 ['4(2 Jaz +ZZJ_Z]<; 2 Zjazj>¢[z]7

where we have used the algebraic identity (B.7) in the evaluation of the triple
sum.

For the action of the potential term we write

Z Z 1 1 Z Z
This yields

28
Vw[z]:[zm ;Zzp](zl,...,zM)
a#p 1
Z+7
= ].
Z»| éma e §ﬂma e Y
=N(N2-1)/12
(2.2.41)
With
M ZJQ 1
Ylzl = =M(M — 1) ¢[z
;Cm_%z 43 e Y = MO0 v
and

Z N Z 1 2

+ 5 5% + 5 N-—1
DR RESBI ) i !
o e T8 a=1 g=1 (e

where we have substituted ng — 737, and used (B.15), we obtain (2.2.33) and
(2.2.34).
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2.2.5 Factorization of the Hamiltonian

In 2.2.4 we have shown that |[¢{°) is an eigenstate of H"® with energy Ey given
by (2.2.5). To show that [¢§®) is the ground state (or at least one of several
ground states), we factorize the Haldane-Shastry Hamiltonian [125, 96, 13]. For
every site 1,, we define an auxiliary operator D, by

N
1N 4757,
D.=-% m[l(sa x 85) + S5]. (2.2.42)
2 4= o — g
BFa

The rapidity operator (2.2.8) is given in terms of these by

N
> Da=A, (2.2.43)
a=1

as one can easily see with (B.16).
We will show below that H™ can be written as:

o2 [2 & N+1
HHS = ﬁ § Z DLDQ + Tsfot + EO, (2244)
a=1
which consists of two positive semi-definite operators (i.e., operators with only
non-negative eigenvalues) and a constant. The lowest energy eigenvalue of H*S
is therefore Ey, and |¢4®) is a ground state.
Taking the ground state expectation value of (2.2.44) implies with

H™ [4hg®) = Eo [967) (2.2.45)

that
D, ) =0, Va=1,...N. (2.2.46)

and St [¢°) = 0. This trivially implies
Ag®) =0, (2.2.47)

i.e., there is no spin current in the ground state. Note that if other ground states
were to exist, (2.2.44) shows that they would have to be singlets and likewise be
annihilated by D,,. It is not very difficult to verify (2.2.46) directly, but since
we have verified (2.2.45) in Section 2.2.4 and will verify (2.2.44) below, there is
no need to do so.

Verification of (2.2.44).—For convenience, we define the purely imaginary
parameter
=
Noe — N
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and recall
1
D=5 3 bualiSa x 521 - 4],
B#a
1
Do = ; Oor [i(Sa x S,) + 8,].
alet

For S =3 and « # 3,7, we obtain
i(So x Sp)i(Sa x 8,) = kemgighsl gm

— <6jl6km 6]m6kl)s ( 616[ ;Eklnsg> gm

Y
= 2848, — %sa(sﬁ % S.), (2.2.48)
and therewith
. . 3 .
[i(Sa x 85) = Sa] - [i(Sa x 5,) +8,] = =7 [555, ~i5a(Sp x S,)].

This implies

N 3 N N N
> D}, “52_ > D 0aslar [SsS, —iSa(Ss x 5,)].
a=1 B=1

B#a

a=14 ~y=1
VF#a
For the terms with o # 8 = 7, we use S x S =iS to write
. 3
5555 — ISQ(Sg X Sﬁ) = 1 + Sa55,
and observe
4
[0 = nl*
For the terms with «a,3, and ~ all distinct, the vector product term vanishes

as it changes sign under interchange of the dummy indices 8 and ~. For these
terms we rearrange the sums

2
025 =1-

N N N N N N
222 =22 2
a=1 =1 y=1 B=1~=1 =1

BFa v#o aF By

and carry out the summation over . With
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1 ! ( 1 1 )
(Na = n8)(Na —Ny) M8 =1y \Na =08 Na — 1y

and
N

Z Uk N—1 Ul
Na — 1 2 Ny — 1’

a=1

a# B,y
which follows directly from (B.12), we obtain

al i 2 2 8
a=1

- — Na — 13 N = Ty 1 — 1y
aF#B,y a#Byy

for 8 # ~. Collecting all the terms yields

8 N
;
5> DD,
a=1
( 3 N 8
_Z —1>(+S SB>+Z<—N)SﬂS
2 @ _ 2 vy
=5 \Ina =151 4 5= \ng =,
Nos.8 3
—12 A (N+1)Y 8,85+ < )
Zlna nsl2 ;;3 g ;;3 Mo —npl*> 4

With the identities

N 3
> 8aSs =St - N

a#B
and N
1
> (32 - 3) =-N(N?-1) - §N(N —-1),
= [N — ng] 4 4 4

where we have used (B.15), we obtain

N N

S.S 9 N+1 N(N?
Y 2e28 SN DiD, 4+ + gz _ NIN"+5)
O(;éﬁ ‘7704 _nﬂ|2 48

and hence (2.2.44). 0
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2.2.6 Spinon excitations and fractional statistics

The elementary excitations for this model are free spinon excitations, which
carry spin % and no charge. They constitute an instance of fractional quantiza-
tion, which is both conceptually and mathematically similar to the fractional
quantization of charge in the fractional quantum Hall effect [95]. Their frac-
tional quantum number is the spin, which takes the value % in a Hilbert space

2
(2.2.2) made out of spin flips ST, which carry spin 1.

One-spinon states.—To write the wave function for a |-spin spinon localized
at site 7, consider a chain with an odd number of sites N and let M = % be
the number of 1 or | spins condensed in the uniform liquid. The spinon wave
function is then given by

—

¢a¢(21,227--~7ZM) = (77a _Zi) ¢gs(2’1,22,...,21y[), (2249)

=1

which we understand substituted into (2.2.2). It is easy to verify SZ 1o, =
*%ﬂia 1 and S¢ (¥ = 0, which shows that the spinon transforms as a spinor
under rotations.

The localized spinon (2.2.49) is not an eigenstate of the Hamiltonian (2.2.1).
To obtain exact eigenstates, we construct momentum eigenstates according to

N
Ymy (21,22, o) = D (7)™ Yay (21, 22, ., 211, (2.2.50)
a=1
where the integer m corresponds to a momentum quantum number. Since
Yoy (21, 22, . .., 20) contains only powers n9,nL,...,nM and
N
> mwne = 6mn mod N, (2.2.51)
a=1
Ymy (21, 22, .., zpr) will vanish unless m = 0,1,..., M. There are only roughly

half as many spinon orbitals as there are sites. Spinons on neighboring sites
hence cannot be orthogonal. With (2.2.33) and (2.2.34), we obtain

2 1 2 2
H™ [thm) = [—;4 (N - N) + %m(M —m)| |[Pmy) - (2.2.52)

To make a correspondence between m and the spinon momentum p,,, we
translate (2.2.50) counterclockwise by one lattice spacing (which we set to unity
for present purposes) around the unit circle,

T [¢my) = PP [hyy) (2.2.53)
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M odd M even

—r 0 ™

allowed momenta

Fig. 2.2 Dispersion of a single spinon in a Haldane—Shastry chain.

With po = =5 N, we find

2 1
P =T — ﬁ” <m + 4) . (2.2.54)

The energy (2.2.52) can be written as E = Ey + €(p,,), with the spinon

dispersion given by
2

e(p) = lp (m—p) (2.2.55)

2 + 8N2’
as depicted in Figure 2.2. The interval of allowed spinon momenta spans only
half of the Brillouin zone, and alternates with M even vs. M odd.

Two-spinon states.—To write the wave function for two |-spin spinons lo-
calized at sites 1, and 7, consider a chain with N even and M = % The
two-spinon state is then given by

M
¢04,3(217Z27 e '7ZM) = H (nOz - Zz)(’)ﬂ - ZZ) ¢(})IS(51722’ . ~7ZM)' (2256)

i=1

A momentum basis for the two-spinon states is given by

N
Gmn(21, 22, 2m) = Y (Ma)™ (18)™ Yap(21, 22, -, 201), (2.2.57)

where M > m > n > 0. For m or n outside this range, ¥, vanishes identi-
cally, reflecting the overcompleteness of the position space basis. With (2.2.33),
(2.2.34), and the algebraic identity

3

—-n

T y(a:my" —z"y"™) =2 g™l (M 4 gy ™), (2.2.58)
T—y p

Il
o
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we obtain [67, 96, 14, 13]

Imax

=1
with
2 19 24
Eon _24<NN+]\72>
272 N N m—n
il S 1 = l-n)- 2.2.
+N2 [m(Q m)+n(2 n) 5 }, (2.2.60)
mn 272

and lyax = min(M — m, n). Since the “scattering” of the non-orthogonal basis
states |[my) in (2.2.59) only occurs in one direction, increasing m — n while
keeping m + n fixed, the eigenstates of H"® have energy eigenvalues F,,,, and

are of the form
I

|Gmn) = D a7 [m1n-1) - (2.2.62)
=0

A recursion relation for the coefficients a}*" is readily obtained from (2.2.59).
If we identify the single-spinon momenta for m > n according to

27 1 27 1
=r— = - =7 — = g 2.2,
DPm =T N<m+2+s>, Pn =T N(n+2 8)7 (2.2.63)

with a statistical shift s = I [50, 51], we can write the energy
En = Eo + €(pm) + €(pn), (2.2.64)

where Ey is the ground state energy (2.2.5) and e(p) the spinon dispersion
(2.2.55).

Fractional statistics.—The mutual half-fermi statistics of the spinons man-
ifests itself in the fractional shift s in the single-spinon momenta (2.2.63), as
we will elaborate now [46]. The Ansatz (2.2.57) unambiguously implies that the
sum of the two spinon momenta is given by ¢, + g, = 27 — 2W”(m +n+1),
and hence (2.2.63). The shift s is determined by demanding that the excitation
energy (2.2.64) of the two-spinon state is a sum of single-spinon energies, which
in turn is required for the explicit solution here to be consistent with the models
solution via the asymptotic Bethe ansatz [60, 28, 50].

The shift decreases the momentum p,,, of spinon 1 and increases momentum
pn, of spinon 2. This may surprise at first as the basis states (2.2.57) are con-
structed symmetrically with regard to interchanges of m and n. To understand
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relative motion of one-dimensional anyons is unidirectional

\l\')

»\1 (e.g. 2 moves clockwise relative to 1)

when anyons cross: |1 >— €% >
. 2h0
momentum spacing: pi1—p2 = Ap — Ap — A
Fig. 2.3 Fractional statistics in one dimension. The crossings of the anyons are unidi-
rectional, and the many particle wave function acquires a statistical phase 8 whenever
they cross.

this asymmetry, note that M > m > n > 0 implies 0 < p,, < p, < 7. The
dispersion (2.2.55) implies that the group velocity of the spinons is given by

vg(p) = Dpe(p) = g —p, (2.2.65)
which in turn implies that vg(p.,) > vg(ps). This means that the relative motion
of spinon 1 (with g,,) with respect to spinon 2 (with ¢, ) is always counterclock-
wise on the unit circle (see Figure 2.3). The shifts in the individual spinon mo-
menta can hence be explained by assuming that the two-spinon state acquires
a statistical phase # = 2ws whenever the spinons pass through each other. This
phase implies that ¢, is shifted by —%“s since we have to translate spinon 1
counterclockwise through spinon 2 and hence counterclockwise around the unit
circle when obtaining the allowed values for ¢, from the PBCs. Similarly, ¢, is
shifted by +2W”s since we have to translate spinon 2 clockwise through spinon
1 and hence clockwise around the unit circle when obtaining the quantization
of qp,.

That the crossing of the spinons occurs only in one direction is a necessary
requirement for fractional statistics to exist in one dimension. If the spinons
could cross in both directions, the fact that paths interchanging them twice (i.e.,
once in each direction) are topologically equivalent to paths not interchanging
them at all would imply 260 = 0 mod 27 for the statistical phase, i.e., only allow
for the familiar choices of bosons or fermions. With the scattering occurring
in only one direction, arbitrary values for 6 are possible. Note that the one-
dimensional anyons break neither time-reversal symmetry (T) nor parity (P).

The fractional statistics of the spinons manifests itself further in the fractional
exclusion (or generalized Pauli) principle introduced by Haldane [66]. If we
consider a state with L spinons, we can easily see from (2.2.50), (2.2.51), and
(2.2.57) that the number of orbitals available for further spinons we may wish
to create is M + 1, where M = NQ_L is the number of 1 or | spins in the
remaining uniform liquid. (In this representation, the spinon wave functions
are symmetric; two or more spinons can have the same value for m.) In other
words, the creation of two spinons reduces the number of available single spinon
states by one. They hence obey half-fermi statistics in the sense of Haldane’s
exclusion principle. (For fermions, the creation of two particles would decrease
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OeReBE = Yo 02 o A3 o [O23]
—_—— FINE 2]

s=1  5=1 §=2
] e o 2 2 z
s=0 S=1

Fig. 2.4 Total spin representations of three S = % spins with Young tableaux. For
SU(n) with n > 2, the tableaux with three boxes on top of each other would exist as
well.

the number of available single particle by two, while this number would not
change for bosons.)

2.2.7 Young tableaux and many spinon states

The easiest way to obtain the spectrum of the model is through the one-to-one
correspondence between the Young tableaux classifying the total spin represen-
tations of N spins and the exact eigenstates of the the Haldane-Shastry model
for a chain with N sites, which are classified by the total spins and the fraction-
ally spaced single-particle momenta of the spinons [52].

This correspondence yields the allowed sequences of single-spinon momenta
p1,---,pr as well as the allowed representations for the total spin of the states
such that the eigenstates of the Haldane Shastry model have momenta and
energies

L L
p=po+Y pi E=Eo+) ep), (2.2.66)
i=1 i=1

where pg and Ejy denote the ground state momentum and energy, respectively,
and e(p) is the single-spinon dispersion. The correspondence hence does not only
provide the quantum numbers of all the states in the spectrum, but also shows
that it is sensible to view the individual spinons as particles, rather than just
as solitons or collective excitations in many body condensates. We now proceed
by stating these rules without further motivating or even deriving them.

To begin with, the Hilbert space of a system of N identical SU(n) spins can be
decomposed into representations of the total spin, which commutes with (2.2.1)
and hence can be used to classify the eigenstates. These representations are
compatible with the representations of the symmetric group Sy of N elements,
which may be expressed in terms of Young tableaux [73, 75]. The general rule
for obtaining Young tableaux is illustrated for three S = % spins in Fig. 2.4.
For each of the NV spins, draw a box numbered consecutively from left to right.
The representations of SU(n) are constructed by putting the boxes together
such that the numbers assigned to them increase in each row from left to right
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Fig. 2.5 Young tableau decomposition and the corresponding spinon states for an S =
% spin chain with N = 4 sites. The dots represent the spinons. The spinon momentum
numbers a; are given by the numbers in the boxes of the same column. Note that

Z(2St0t + 1) - 2N

and in each column from top to bottom. Each tableau indicates symmetrization
over all boxes in the same row, and antisymmetrization over all boxes in the
same column. This implies that we cannot have more than n boxes on top
of each other for SU(n) spins. For SU(2), each tableau corresponds to a spin
S = %()\1 — \g) representation, with \; the number of boxes in the i th row, and
stands for a multiplet $* = —S,...,S.

The one-to-one correspondence between the Young tableaux and the non-
interacting many-spinon eigenstates of the Haldane—shastry model is illustrated
in Fig. 2.5 for a chain with N = 4 sites. The rule is that in each Young tableau,
we shift boxes to the right such that each box is below or in the column to the
right of the box with the preceding number. Each missing box in the resulting,
extended tableaux represents a spinon. The extended tableaux provide us with
the total spin of each multiplet, which is given by the representation specified
by the original Young tableau, as well as the number L of spinons present and
the individual spinon momentum numbers a;, which are just the numbers in
the boxes above or below the dots representing the spinons. The single-spinon
momenta are obtained from those via

T 1

pi= 5 <ai - 2) , (2.2.67)

which implies 6 < p; <7 — 4§ with § = 5% — 0 for N — oo.
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The total momentum and the total energies of the many-spinon states are
given by (2.2.66) with

™

TN B=-T Nyl (2.2.68)
bo = 9 ) 0 — 24 N ) s L

and the single-spinon dispersion
2

+ 5y (2.2.69)

1
€(p) = 5p (7 —p)
where we use a convention according to which the “vacuum” state ||{ ... ]) has
momentum p = 0 (and the empty state |0) has p = (N — 1)).

This correspondence shows that spinons are non-interacting, with momentum
spacings appropriate for half-fermions. We may interpret the Haldane-Shastry
model as a reparameterization of a Hilbert space spanned by spin flips (2.2.2)
into a basis which consists of the Haldane-Shastry ground state plus all possible
many spinon states. The reward for such a reparameterization is that a highly
non-trivial Hamiltonian in the original basis may be approximately or exactly
diagonal in the new basis, as this basis is chosen in accordance with the quantum
numbers of the elementary excitations.

2.3 The Moore—Read state and its parent Hamiltonian
2.3.1 The Pfaffian state and its parent Hamiltonian

The Pfaffian state at even denominator Landau level filling fractions was intro-
duced independently by Moore and Read [108] as an example of a quantized Hall
state which supports quasiparticle excitations which obey non-Abelian statis-
tics, and by Wen, Wilczek, and ourselves [54, 55] as a candidate for the ob-
served plateau in Hall resistivity at Landau level filling fraction v = 5/2, i.e.,
at v = 1/2 in the second Landau level [153, 114, 157, 115, 161], a proposal
which was subsequently strengthened [110, 107, 132, 142] and which recently
received experimental support through the direct measurement of the quasipar-
ticle charge [24, 117].
The wave function first proposed by Moore and Read [108] is

N N
¢0(31,22,...,ZN):Pf( ! )H(Zi_zj')mne_ﬂziz, (2.3.1)
=1

S

where the particle number N is even, m is even (odd) for fermions (bosons),
and the Pfaffian is is given by the fully antisymmetrized sum over all possible
pairings of the IV particle coordinates,
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Pf< L )A{ LI ! } (2.3.2)
Zi — Zj Z1 — %9 ZN—1 — ZN

The inverse Landau level filling fraction is given by

1 ONg  O(m(N-1)—1)
== TN =m. (2.3.3)

The state describes a Laughlin state at v = 1/m supplemented by a Pfaffian
which implements p-wave pairing correlations. Since the Pfaffian is completely
antisymmetric, it reverses the statistics from bosons to fermions or vice versa,
but does not change the Landau level filling fraction.

The Pfaffian describes a BCS wave function [11, 121, 37, 143] in position
space, obtained by projecting on a definite number of particles [26, 45]. To see
this, first rewrite the (unnormalized) BCS wave function as

ip Vk
el =TT (1492l ) 0

k

- ) t + )
= | I exp|e*?— C 0
p( Uk CkT —k | >

— ig N Yk b
= exp (e zk: " Chey C—k¢) |0)
= exp(e'?b) |0), (2.3.4)

where the pair creation operator b' is given by

(I N
) *Zukcmc—m
k

_ / Py oz — ) B (@) 6] (22) 0). (2.3.5)

The wave function for each of the individual pairs, which only depends on the
relative coordinate, is given by

1 Ve ik
== — ", 2.3.
p(x) V;%e (2:3.6)

If we now project out a state with N/2 pairs [4, 26, 45], we obtain

1

2
n) = gp | deeT N i)

Lo i
), doe N¢/Qexp(e¢bT) |0)
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= L), (2.3.7)

($)!

which is (up to a normalization) equivalent to

[Yn) = /d3a:1...d3mN ey —xa) ... p(®nN_1— TN)

@)y (@) .. i@y -1)d](@n) |0). (2:3.8)
This implies that the many-particle wavefunction is given by a Pfaffian,

(... xN) =Pl (p(z; —x;)). (2.3.9)

This form nicely illustrates that all the pairs have condensed into the same state,
which is the essence of superfluidity. For fermion pairings with even relative
angular momentum of the pairs, such as s- or d-wave, the wave function p(x; —
x;) of the pairs is symmetric in real space, and antisymmetric in spin space
(i.e., a singlet), while for pairings with odd angular momentum, such as p-wave,
o(x; — x;) is antisymmetric in real space and symmetric in spin space (i.e., a
triplet).

In the quantized Hall state, the requirement of analyticity in the complex
coordinates constraints the possible form of the pair wave function decisively.
Since the electrons are spin polarized, the only possible choice is the p-wave
pairing described by the Pfaffian with ¢(2; — 2;) = 1/(%; — #;). Note that this
pair wave function would not be normalizable if it were not multiplied by at
least an m = 1 Laughlin state.

One of the most important mathematical properties of the Pfaffian is that
its square is equal to the determinant,

P (p(a; — a;))* = det(Myy), (2.3.10)
where
_J0 for i = 7,
Mis = {w(ﬂci — ;) for i # j. (2.3.11)

Another important identity, due to Frobenius [33], is given by (2.4.31) in Section
2.4.4 below.

The uniquely specifying property of the Pfaffian quantized Hall state (2.3.1)
is that the wave function vanishes as the (3m — 1)-th power as three particles
approach each other. This property simply reflects that there can be at most
only one pair among each triplet of particles. This observation has led Wen,
Wilczek, and ourselves [54, 57, 55] to propose the parent Hamiltonian

N
vim = 3 (v (5<2>(zz- — )6z — zk)) , (2.3.12)

i<k
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which, when supplemented with the kinetic Hamiltonian (2.1.9) as well as all
similar terms with smaller powers of the Laplacian, singles out (2.3.1) as its
unique ground state. For all practical purposes, however, it is best to formulate
our parent Hamiltonian in terms of three-body pseudopotentials, as we will
elaborate in Section 2.3.4.

2.3.2 Quasiparticle excitations and the internal Hilbert space

One of the key properties of superconductors is that the magnetic vortices are
quantized in units of one half of the Dirac flux quanta ®g = 27fic/e, in accor-
dance to the charge —2e of the Cooper pairs. The paring correlations in the
Pfaffian Hall state have a similar effect on the vortices or quasiparticle excita-
tions, which carry one half of the flux and charge they would carry without the
pairing, i.e., they carry charge e* = e¢/2m. The wave function for two flux %
quasiholes at positions &; and &5 is easily formulated. We simply replace each

factor in the Pfaffian in (2.3.1) by

Pf< ! )%Pf((zi&)(zj52)+(zi<—>zj)>, (2.3.13)

Zi—Zj zi—zj

such that one member of each electron pair sees the additionally inserted zero
at & and the other member sees it at &. If we set & = & = &, we will recover
a regular quasihole in the Laughlin fluid with charge e* = e/m.

The internal Hilbert space spanned by the quasiparticle excitations only
emerges as we consider the wave function for four charge e* = e/4 quasiholes
at positions &1, ..., &, which is obtained by replacing the Pfaffian in (2.3.1) by

Pf( 1 >_>Pf<(zz'€1)(zj52)(2153)(23‘54)+(%H2j)>.

Zi—Zj ZZ'—Zj

(2.3.14)

We see that & and &3 belong to one group in that they constitute additional
zeros seen by one member of each electron pair, while €5 and &4 belong to another
group as they constitute zeros seen by the other members of each electron pair.
The wave function is symmetric (or antisymmetric, depending on the number
of electron pairs) under interchange of both groups. The state in the internal
Hilbert space spanned by the quasihole affiliations with the two groups will
change as we adiabatically interchange two quasiholes belonging to different
groups, say &3 and &,. Naively, one might think that the dimension of the internal
Hilbert space is given by the number of ways to partition the quasiholes at
&1, ..., &y into two different groups, i.e., by (2n — 1)!! for 2n quasiholes. Note
that the number of quasiholes has to be even on closed surfaces to satisfy the
Dirac flux quantization condition [23]. The true dimension of the internal Hilbert
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space, however, is only 2”1 [112]. The reason for this is that the internal Hilbert
space is spanned by Majorana fermion states in the vortex cores [118], as we
will elaborate in the following section.

The statistics is non-Abelian in the sense that the order according to which
we interchange quasiholes matters. Let the matrix M;; describe the rotation of
the internal Hilbert space state vector which describes the adiabatic interchange
two quasiholes at &; and &;:

[v) — M;j[) .

The statistics is non-Abelian if the matrices associated with successive inter-
changes do not commute in general,

M;j Mji # M Mi;.

Note that the internal state vector is protected in the sense that it is insen-
sitive to local perturbations—it can only be manipulated through braiding of
the vortices. For a sufficiently large number of vortices, on the other hand, any
unitary transformation in this space can be approximated to arbitrary accuracy
through successive braiding operations [32]. These properties together render
non-Abelions preeminently suited for applications as protected qubits in quan-
tum computation [22, 111, 17, 109, 130].

2.3.3 Majorana fermions and non-Abelian statistics

The key to understanding the non-Abelian statistics [130] of the quasiparticle
excitations of the Pfaffian state lies in the Majorana fermion modes in the
vortices of p-wave superfluids [88, 118, 76, 131]. The p-wave pairing symmetry
implies that the order parameter for the superfluid acquires a phase of 27 as we
go around the Fermi surface,

(el el ) = Do(k) - (ky + iky), (2.3.15)

where Ag(k) can be chosen real. The Hamiltonian for a single vortex at the
origin is given by

H= /dr {w (- v’ F)¢+w (6 A0(r) * (8, — i0,)) o' +h.c.},

om ©
(2.3.16)

where A x B = %{A,B} denotes the symmetrized product, and r and ¢ are
polar coordinates. The order parameter Ag(r) vanishes inside the vortex core.
We can obtain the energy eigenstates localized inside the vortex by solving the
Bogoliubov—de Gennes equations [37] equations
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[H,~} (z)] = E,v (), (2.3.17)
where n labels the modes and

(@) = up(2)0 () + vy (@) () (2.3.18)

are the Bogoliubov quasiparticle operators. The low energy spectrum is given
by [88, 118]
E,, = nwy, (2.3.19)

where n is an integer and wy = A?/er the level spacing. Note that while in an
s-wave superfluid, the Bogoliubov operators

Y (@) = tnt (@)Y () + voy (@)1 (2) (2.3.20)

combine T-spin electron creation operators with |-spin annihilation operators,
in the p-wave superfluid, the operators (2.3.18) combine creation and annihi-
lation operators of the same spinless (or spin-polarized) fermions. Since the
Bogoliubov—de Gennes equations are not able to distinguish between particles
and antiparticles, we obtain each physical solution twice: once with positive
energy as a solution of the Bogoliubov—de Gennes equation (2.3.17) for the
creation operators, and once with negative energy as a solution of the same
equation for the annihilation operators,

[H, o (2)] = —Enyn(T), (2.3.21)

which is obtained from (2.3.17) by Hermitian conjugation. We resolve this tech-
nical artifact by discarding the negative energy solutions as unphysical. For the
n = 0 solution with at Ey = 0, it implies that we get one fermion solution when
we overcount by a factor of two. The physical solution at £ = 0 is hence given
by one half of a fermion, or a Majorana fermion, as

W (@) = 70(). (2.3.22)
In general, one fermion 1, %! consists of two Majorana fermions,
1 . i1 .
Y= 5(’71 +iv2), Y= 5(71 —i72), (2.3.23)
which in turn are given by the real and imaginary part of the fermion operators,
n=v+9l, =i -y"). (2.3.24)

They obey the anticommutation relations

{visvi} = 2645, (2.3.25)
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boundary

time

branch cut

Yi+1

as ;41 crosses the

° branch cut vi4+1 — —7vi41

Fig. 2.6 The Majorana fermion ~;41 acquires a — sign as it crosses the branch cut
from another vortex.

as one may easily verify with (2.3.24). Majorana fermions are their own antipar-
ticles, as 'yg = ;. If we write the basis for a single fermion as {|0),¢[0)}, we
can write the fermion creation and annihilation operators as

Yt = ((1) 8) , Y= (8 é) . (2.3.26)

In this basis, the Majorana fermions are given by the first two Pauli matrices,

01 0 —i
v = (1 O) =0y, V2= (i 0> = 0oy. (2.3.27)

Returning to vortices in a p-wave superfluid, note that the order parameter
acquires by definition a phase of 27 as we go around a vortex. This implies
that the electron creation and annihilation operators acquire a phase m, or a
minus sign, which implies via (2.3.24) that the Majorana fermion states acquire
likewise a minus sign,

Yi — —Vi, (2.3.28)

as we encircle a vortex. By choice of gauge, we can implement the phase change
of 27 in the superconducting order parameter as a branch cut connecting the
vortices to the left boundary of the system, and assume a convention according
to which the Majorana fermion in each vortex crossing a branch cut acquires a
minus sign, as illustrated in Figure 2.6.

To obtain the non-Abelian statistics, Ivanov [76] considered permutations of
2n vortices by braiding, which form the braid group Bsa, [80]. This group is
generated by counterclockwise interchanges T; of particles i and i + 1, which
are neighbors with regard to the positions of their branch cuts to the boundary.
The algebra of the group is given by
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BN \

Tit1

Tit1 = T;

A A

Vi Yi+1  Yi+2 Yi Yi+1  Yi42

Fig. 2.7 Illustration of the defining algebra of the braid group Ban: T;T;41T; =
T 1T

TiTj = ,_TJTZ for |Z 7]| > 1,
(2.3.29)
TT,T, = ;T for |i—j| =1,

as illustrated in Figure 2.7. Note that the braid group is different from the
permutation group as
T, ' # T

The convention for the minus signs acquired by the Majorana fermions defined
in Figure 2.6 implies the transformation rule

Yj+1 for i = j,
Ti(’}/j) =93 Yi-1 for 4 2] - 1, (2330)
v  otherwise.

To describe the action of these transformations on the (internal) state vectors,
we hence need to find a representation 7(7;) of the braid group Bs, such that

T(T)ym(Ti) ™t = Ti(v;) (2.3.31)
with T;(vy;) given by (2.3.30). The solution is [76]
™
7(T;) = exp (Z’Yi+1%‘)
(5] )
= COs 4 Vi+17: S 1)’

1
—= (L4 7i17%), (2.3.32)

[\)



2.3 The Moore-Read state and its parent Hamiltonian 53

as one can easily verify using (vi41v:;)? = —1. The inverse transformation is
given by
_ 1
T(T;) ™ = \ﬁ(l = Yi+1%i)- (2.3.33)

A few steps of algebra yield

wfgn- (3}

This representation coincides with that of Nayak and Wilczek [112] for the
statistics of the quasiholes in the Pfaffian state.

The simplest examples of this representation are the cases of two and four
vortices [112, 31, 76], which we will elaborate now. In the case of two vortices,
the two Majorana fermions ; and - can be combined into a single fermion via
(2.3.23), and the ground state is hence two-fold degenerate. The braid group
Bs has only one generator T} with representation

s
7(T1) = exp (Z’Y2’Y1)

— exp (—i T — w1 +u1))

= exp (4%@ : (2.3.34)

where o, is the third Pauli matrix (2.1.66) in the basis { [0),47]0) }. The braid-
ing is hence diagonal in this basis, and only gives an overall phase, which depends
on whether the fermion state is occupied or not.

The non-Abelian statistics manifests itself only once we consider four vortices.
Following Ivanov [76], we combine the four Majorana fermions into two fermions,

1 ) 1 .
Y1 = 5(71 +iv), = 5(73 + i74), (2.3.35)

and accordingly for the fermion creation operators 1/){, 1/1; The braid group By
has three generators 17, T, and T3. Their representations in a basis of fermion
occupation numbers

{10y, 0}, 95 |0y, vl [0) }

are given by two diagonal operators
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e”i®/4 0 0 0
s LT 0 €%t 0 0
7(T1) = exp (Z"/Q'Vl) = €xp (—11051)) = 0 0 e-in/4
0 0 0 €1
e”i®/4 0 0 0
T LT 0 e ™/t 0 0
7(T3) = exp (Z”Yﬂzs) = €xp (—11052)) = 0 0 €m/4 0
0 0 0 e/t
and one off-diagonal operator,
e
7(Tz) = exp (17372)
1 0 0 —i
_ b . ¥ o) 0 1 -1 0
= o5 (- rvhwi-wh) = § 5 7 ¢
-1 0 0 1

Note that since the representations 7(7;) given by (2.3.32) are even in the
fermion operators, i.e., change the fermion numbers only by even integers, we
may restrict them to only even or odd sectors in the fermion numbers. For
the example of four vortices, these sectors are given by {|0),4I][0)} and
{1/}1 |0) M/)% |0)}. Each sector contains 2"~ ! states, which is the degeneracy found
for a Pfaffian state with an even number of electrons [112]. Physically, this
reflects that while the number of fermions is not a good quantum number in
a superfluid, the number of fermions modulo two, i.e., whether the number is
even or odd, is a good quantum number.

Finally, note that the derivation of the non-Abelian statistics depends only
on (a) the vortices possessing Majorana fermion modes, and (b) the Majorana
fermions changing sign v; — —<; when the order parameter phase changes by
2w, as it does by definition when we go around a vortex.

2.3.4 The Pfaffian state and its parent Hamiltonian on the sphere

The Pfaffian state is readily formulated in the spherical geometry [55]. The
wave function for N particles at Landau level filling ¥ = 1/m on a sphere with
259 = m(N — 1) — 1 magnetic flux quanta is given by

N

[T wiv; —ujo)™,

i<j

1
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where m is even for fermions and odd for bosons. Note that the relation be-
tween flux and particle number implies that the states at v = 1/2 is not its
own particle-hole conjugate [100, 98]. The formulation of quasihole excitations
generalizes without incident from the planar geometry.

As mentioned in Section 2.3.1, the uniquely specifying property of the Pfaf-
fian state (2.3.36) is that it vanishes as the (3m — 1)-th power of the distance
as three particles approach each other. For the spherical geometry, the corre-
sponding parent Hamiltonian can be conveniently formulated using three-body
pseudopotentials [127]. In analogy to the two-particle interaction Hamiltonian
(2.1.84), we write the three-particle interaction Hamiltonian

N 2s
Y = > {ZVZ(:S)P?,sl(Li—i—Lj—&-Lk)}. (2.3.37)
i<j<k l

The three-body parent Hamiltonian proposed by Wen, Wilczek, and ourselves
[54, 55] then amounts to taking
1 forl<3m-—1
(3) )
= 2.3.
v {0 for I > 3m — 1. (2.3.38)

The form (2.3.37) is not the most general one, as for [ > 6 for bosons (I > 9
for fermions), the three particle state is no longer uniquely described by the
three body angular angular momentum [, and one may assign different pseu-
dopotential coefficients to the different symmetric (antisymmetric), homoge-
neous, rotationally invariant polynomials of degree [ describing the three body
states [127]. This, however, should not concern us here as we are only interested
in the case m = 1 for bosons and m = 2 for fermions. Furthermore, as in the
case of two-body pseudopotentials, where [ had to be even for bosons and odd
for fermions, there exists a related restriction for the allowed values of [ for
three-body pseudopotentials. Specifically, we have no state with [ =1 (I = 4)
for bosons (fermions).

For all practical purposes, we once again need to rewrite (2.3.37) in terms of
boson or fermion creation or annihilation operators,
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S S S S S S
3) _
Hi'= 3 >0 2 20 2 2. hah,ahGmimang
m1=—8 Ma2=—8 M3=—8 Mg——8 M5=—8 Meg——3S8

: 67711 +ma+msz,ma+ms+me

2s  3s—|j—s]

Z Z Vl(g) (s,m1;s,malj,m1 +ma)

)=0 [=3s—(j+s
’ R (4, m1 + ma;s,mg|3s — I, m1 + ma + m3)
(35 — I, my4 + ms5 + mg|s, my; J,ms + me)

- (j,ms + mgls, ms; s, mg) , (2.3.39)

where a,, annihilates a boson or fermion in the properly normalized single
particle state

Yo, v) = \/477( (25 1 1) ustmysTm (2.3.40)

s+m)!(s—m)!

and (s,m1;s,ma|2s — I, m1 + ms) etc. are Clebsch—Gordan coefficients [12].

2.4 An S =1 spin liquid state described by a Pfaffian
2.4.1 The ground state

As for the Haldane—Shastry model, we consider a one-dimensional lattice with
periodic boundary conditions and an even number of sites N on a unit circle
embedded in the complex plane. The only difference is that now the spin on
each site is § = 1:

N sites with spin 1 on unit circle:
Na =i Fe witha=1,...,N
The ground state wave function we consider here [44] is given by a bosonic

Pfaffian state in the complex lattice coordinates z; supplemented by a phase
factor,

1 \H -
Uo (21,22, 2N) = Pf( ) [1Gi==)]1 = (2.4.1)

o — 2
v 17 i<y i=1
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The Pfaffian is given by the fully antisymmetrized sum over all possible pairings
of the N particle coordinates,

Pf< L )A{ LI ! } (2.4.2)
Zi — Zj§ Z1 — %9 ZN—1 — 2N

The “particles” z; represent re-normalized spin flips 5’;' acting on a vacuum
with all spins in the S* = —1 state,

W,g':1> _ Z VS (21, 2N) 5*2-1 . S;‘N |=1) 5 s (2.4.3)

{#z1,-,2N}

where the sum extends over all possibilities of distributing the N “particles”
over the N lattice sites allowing for double occupation,

- z 41
St = La; St (2.4.4)
and
[~y = ®31; 1, 1), - (2.4.5)

This state may be viewed as the one-dimensional analog of the non-Abelian
chiral spin liquid [53].

Like the ground state of the Haldane—Shastry model, the S =1 state (2.4.1)
describes a critical spin liquid in one dimension, with similarly algebraically
decaying correlations. It does not, however, serve as a paradigm of the generic
S =1 spin state, as the generic state possesses a Haldane gap [62, 64, 1, 30]
in the spin excitation spectrum due to linearly confining forces between the
spinons [2, 3, 44, 49, 47].

One of the objectives of this work is to identify a parent Hamiltonian for
which this state is the exact ground state, and hence accomplish what Haldane
and Shastry have accomplished for the spin one-half Gutzwiller wave function.

2.4.2 Symmetries

Translational invariance.—As for the Haldane-Shastry model, we obtain the
ground state momentum py (in units of inverse lattice spacings 1/a) by trans-
lating the ground state by one lattice spacing around the unit circle,

T |y5=") = P |y5="). (2.4.6)

With Tz; = exp (1%”) z; we find

2r( N  N(N-1) B
pO_N( T = +N)—7rN, (2.4.7)
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which implies pg = 0 as N is even.

Invariance under SU(2) spin rotations.—The proof of the singlet property is
similar to the Haldane—Shastry model, but more instructive as it motivates the
re-normalization of the spin-flip operators in (2.4.4).

Since S7.. ]¢§:1> = 0 by construction, it is sufficient to show S, ]¢§:l> =0.
Note first that when we substitute (2.4.1) with (2.4.2) into (2.4.3), we may
replace the antisymmetrization A in (2.4.2) by an overall normalization factor,
as it is taken care by the commutativity of the bosonic operators S,. Let 1/30 be

5=! without the antisymmetrization in (2.4.2),
1 1 N N
¢Oz-:N—1!!{ } Zi — % zi. (248
= o e Il s [T 249
Since zﬁo(zl, z2,...,2N) is still symmetric under interchange of pairs, we may

assume that a spin flip operator S, acting on |1/~)0> will act on the pair (21, 22),

S;|wOS:1> :Z Z 12}0(770172”27237'”)8; 51;'_52;

{z352n} ~22(#Na)

+ Z 12;0(21777@7'23"")5(; Sjlg(;t
Zl(#ﬁa)

+ 7/?0(77m77aa237~-~)5(; (S;r)Q}S;;S‘;FN 71>N

=y {Z 200 (Tar, 22, 23, - - - ) S;}Sjs LSH DN, (24.9)

{z3,..,2n} = 22
where we have used

So (S$)n‘17_1>a :n(gi)n_l |17_1>a7 (2'4'10)

(03

which follows directly form the definition (2.4.4).
This implies

N
Sioe [0671) =Y So[wg=h)
a=1

N
=2 > Y Yoz, san) S ST 1)y, (2410)

{z2.2n}a=1

=0

since 1o (7, 22, - - - , 2x) contains only powers 7,72,..., 7Y~ in n, and
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N
anf = Ny, mod N.
a=1

Parity and time reversal invariance—To show that tg(z1,...,2nN) is real,
and hence that |w§:1> is invariant under parity, we calculate its complex con-
jugate,

24 Zj 1<J =1
N 1 N(N-1) N 1 N 1
N - —
=02 [[=0 = [ — 11 = ¥~
-tz Ll Zizy Tz
i=1 1<j i=1
=571 2], (2.4.12)

as N is even and z¥ = 1 for all i. Time reversal [40] transforms
i— i, 2=z, Sq— —8a, |s,m)—iZ™]|s,—m),

which implies that the basis states in (2.4.3) transform according to

S;rl e .g;N |~1)y = S5 - g;N [+1) s (2.4.13)
where § 41
So = —5 Sas IHly = @M1 |1, +1),, . (2.4.14)

Together with the singlet property, this implies that |1/)5q:1> is invariant under
time reversal.

All the symmetries properties discussed here will emerge almost trivially
when we generate the state |1/)§:1> through projection form Gutzwiller (or
Haldane—Shastry ground) states in Section 2.4.4.

2.4.3 Schwinger bosons

Schwinger bosons [123, 10] constitute a way to formulate spin-S representations
of an SU(2) algebra (which can easily be generalized to SU(n), see e.g. [49]).
The spin operators

S = % (af,b) U(Z) (2.4.15)

where o = (o0x,0y,0,) is the vector consisting of the three Pauli matrices
(2.1.66), are given in terms of boson creation and annihilation operators which
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obey the usual commutation relations

[a,a/] = [b,b1] =1,

(2.4.16)
[a,8] = [a,81] = [a,0] = [af,b1] = 0.
It is readily verified with N
[0i,0;] = 2%y, (2.4.17)
and (2.4.16), that S*, S¥, and S” satisfy the SU(2) algebra
[S%,57] = ielik g*. (2.4.18)

Written out in components we have

Sx +iSY = St = afb,
S* —iS¥ = S~ = bla, (2.4.19)
5% = L(ata —b'b).

The spin quantum number S is given by half the number of bosons,
28 = a'a + b, (2.4.20)
and the usual spin states (simultaneous eigenstates of S? and S?) are given by

(aT)Ser (bT)S—m

S,m) = 0). 2.4.21
S = S = (2.4.21)
In particular, the spin—% states are given by

1) =cf0)=alj0), ) =c]|o)=b|0), (24.22)

i.e., at and b' act just like the fermion creation operators 01 and CI in this case.
The difference shows up only when two (or more) creation operators act on the
same site or orbital. The fermion operators create an antisymmetric or singlet
configuration (in accordance with the Pauli principle),

10,0) = cle] |0), (2.4.23)

while the Schwinger bosons create a totally symmetric or triplet (or higher spin
if we create more than two bosons) configuration,

1,1) = 5(a)?|0),
11,0) = afd" |0), (2.4.24)

1,-1) = Z5(01)?[0).
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Representations of spin % states in terms of Schwinger bosons (rather than

fermion creation operators or spin flips) are ideally suited for the construction
of higher spin states through projection of 25 spin %’s onto the spin S repre-

sentations (i.e., the symmetric representation) contained in

1 1 1
§®§®...®§:S@(QS*l)S—l@... (2425)
-

25

Classic examples include the formulation of the Affleck—Kennedy—Lieb—Tasaki
(AKLT) model [2, 3] in terms of Schwinger bosons [8, 10] as well as the S =1
chirality liquid [44].

2.4.4 Generation by projection from Gutzwiller states

We will show now that the S = 1 ground state (2.4.1) can alternatively be
generated by considering two (identical) Haldane—Shastry or Gutzwiller states
(2.2.3) and projecting onto the triplet or S = 1 configuration contained in

393=061 (2.4.26)

at each site [44, 53]. To begin with, we rewrite (2.2.2) in terms of Schwinger
bosons,

e = Y BS[2) SE - SE [ )

{z1,22,..., Zm}

= Z MS(zlaf .. al bE b1 |0)

21 tzm Wy wnM

{z1,-zm5w1 50w }

= Ui[al, 1] |0), (2.4.27)

where M = % and the wy’s are those lattice sites which are not occupied by
any of the z;’s. The S = 1 state (2.4.1) is then up to an overall normalization
factor given by

w5 = (w°[al 1)) o). (2429

To verify (2.4.28), use the identity

M 2M 1 2M
S{ H (Zi — Zj)2 H (Zi - Zj)z} = Pf (ZZ — ,Zj> H(Zz — Zj), (2429)

ij=1 ij=M+1
i<j i<j

where S indicates symmetrization over all the variables in the curly brackets,
and
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1 -

\nnt\(2—n) _ +\n
— (" 0) = (§H)" |1, —1) 2.4.30
@) 0 = (5911 (2.4.30)
which is readily verified with (2.4.19), (2.4.24), and the definition (2.4.4). To
proof (2.4.29), use the following identity due to Frobenius [33],

M 2M
[TG-2 II -2
i,j=1 i,j=M+1
1 MM+ P
det <ZZ—ZM+]) =0 M 2M . (2.4.31)
II II Gi—=)
i=1 j=M+1

The projective construction directly reveals several interesting features,
which were not nearly as obvious in the previous formulation:

(a) Since the Haldane-Shastry ground state |1§®) is translationally invariant
with ground state momentum py = 0 or 7 (depending on whether % is
even or odd), the S = 1 state ‘¢69:1> is translationally invariant with
po = 0.

(b) Since |[¢§®) is a singlet, and the projection onto spin S = 1 on each site
commutes with spin rotations, |w§:1> has to be a singlet as well.

(c) Since ¥§®(z1,...,2p) is real with the sign of each spin configuration given
by Hf\il G(zi), the S = 1 wave function 5= (z1, ..., 2ar) is likewise real
with the sign given by Hf\il G(z):

Pr (2 ! Zj) ljj(z )

J

N

[[GG), (2432

i=1

0521(21,...,,21\;) =

with G(1,) = £1 depending on whether « even or odd.
(d) Since |¢§®) is invariant under parity and and time reversal,
invariant as well.

§:1> is

2.4.5 Topological degeneracies and non-Abelian statistics

We have seen in Section 2.3.3 that 2n spatially well separated quasiparticle
excitations or vortices carrying half of a Dirac flux quanta each in the non-
Abelian quantized Hall state described by the Pfaffian will span an internal or
topological Hilbert space of dimensions 2™ (2"~! for either even or odd fermion
numbers), in accordance with the existence of one Majorana fermion state at
each vortex core. The Majorana fermion states can only be manipulated through
braiding of the vortices, with the interchanges being non-commutative or non-
Abelian.
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The question we wish to address in this section is whether there is any mani-
festation of this topological space of dimension 2™, or the 2n Majorana fermion
states, in the spinon excitation Hilbert space suggested by the S = 1 ground
state (2.4.1). In Section 2.2.6, we have seen that the fractional statistics of
the spinons in the Haldane—Shastry model, and presumably in any model sup-
porting one-dimensional anyons, is encoded in the momentum spacings of the
excitations. This is not too surprising, as there are no other suitable quantum
numbers, like the relative angular momentum for two-dimensional anyons, avail-
able. We will propose now that the topological degeneracies, or the occupation
numbers of the n fermions consisting of the 2n Majorana fermions, are once
again encoded in the momentum spacings between single spinon states.

In the Haldane-Shastry model, the spacings between neighboring momenta
were always half integer, in accordance with half-fermi statistics, as the dif-
ference between consecutive spinon momentum numbers a; was always an odd
integer,

Ai+1 — A = odd. (2433)

This follows directly from the construction of the extended Young tableaux illus-
trated in Fig. 2.5. When two spinons are in neighboring columns, the difference
of the a; is one and hence an odd integer; when we insert complete columns
without spinons in between, the number of boxes we insert is always even.

We will now show that for the S = 1 chain with the Hilbert space pa-
rameterized by the ground state |¢§=') and spinon excitations above it, the
corresponding rule is

a;1+1 — a; = even or odd, for 7 odd,
. (2.4.34)
a;+1 — a; = odd, for i even.

As i = 1,2,...,2n, we have a total of n spacings which can be either even
or odd, and another n spacings which are always odd. With the single spinon

momenta given by
T (L (2.4.35)
Pi N a; 9 )" 4.

this yields momentum spacings which can be either an integer or an half-integer
times %’r for ¢ odd. This is a topological distinction—for Abelian anyons, one
choice corresponds to bosons or fermions (which are for many purposes equiva-
lent in one dimension), and the other choice to half fermions. For spinons which
are well separated in momentum space, the states spanning this in total 27
dimensional topological Hilbert space become degenerate as we approach the
thermodynamic limit.

To derive (2.4.34), we introduce a second formalism of extended Young
tableaux, this time for spin S = 1. The general rule we wish to propose for
obtaining the tableaux is illustrated in Fig. 2.8 for three spins with S = 1. The
construction is as follows. For each of the N spins, put a row of two adjacent
boxes, which is equivalent to the Young tableau for a single spin without any
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[1]1] ® [2]2] ® [3]3] = 113|3|@|112' @“123'@'112'3'3'
2(2(e o 0233| o|2(3]e o(2|e o @
N——— L<]
S=1 S=0 S=1 S=2
_ [ o 02
212 020
[1]1]2]2 [1]1]2]2]3] [1T1]2]2]3]3]
@ 690033@0001.@0.0000

Fig. 2.8 Total spin representations of three S = 1 spins in terms of extended Young
tableaux.

numbers in the boxes. Put these IV small tableaux on a line and number them
consecutively from left to right, with the same number in each pair of boxes
which represent a single spin. To obtain the product of some extended Young
tableau representing spin Sy on the left with a spin 1 tableau (i.e., a row of two
boxes with the same number in it) on the right, we follow the rule

1, for Sy =0,

So @1 =
0% {SO—I@SO@SO+1, for Sp=1,2,...

(2.4.36)

i.e., we obtain only one new tableau with both boxes from the right added to the
top row if the tableau on the left is a singlet, and three new tableaux if it is has
spin one or higher. These three tableaux are constructed by adding both boxes
to the bottom row (resulting in a representation So—1), by adding the first box
to the bottom row and the second box to the top row without stacking them on
top of each other (resulting in a representation Sy), and by adding both boxes
to the top row (resulting in a representation So+1). In each extended tableau,
the boxes must be arranged such that the numbers are strictly increasing in each
column from top to bottom, and that they are not decreasing from left to right
in that the smallest number in each column cannot be smaller than the largest
number in the column to the left of it. In analogy to the Haldane—Shastry model,
the empty spaces in between the boxes are filled with dots representing spinons.
The spinon momentum number a; associated with each spinon is given by the
number in the box in the same column. A complete table of all the extended
Young tableaux for fours S = 1 spins is shown in Fig. 2.9. The assignment of
physical single spinon momenta to the spinon momentum numbers (2.4.47) is
identical to this assignment for the Haldane—Shastry model, as we can obtain
the 3"V states of the S = 1 Hilbert space by Schwinger boson projection (i.e.,
by projecting on spin S = 1 on each site) from states contained in the 2V x 2V
dimensional Hilbert space of two S = % models, a projection which commutes
with the total momentum. The correctness of this assignment has further been
verified numerically up to N = 16 sites [120].

With the tableau structure thus in place, all that is left to show is that the
momentum spacings are according to (2.4.34). Looking at any of the tableaux
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Fig. 2.9 Extended Young tableau decomposition for an S = 1 spin chain with N =4
sites. The dots represent the spinons. The spinon momentum numbers a; are given by
the numbers in the boxes of the same column. Note that Y (2St0t + 1) = 37V.

in Fig. 2.9, we note that from left to right, the spinons alternate between being
assigned to the first of the two boxes with a given number and being assigned to
the second of such two boxes. This follows simply form the fact that the number
of boxes in between the columns with the two neighboring spinons must be even.
The first spinon momentum number a; is always odd, but all the other a;’s can
be either even or odd. The rule is therefore that if ¢ is odd, the i-th spinon
is assigned to the first of the two boxes with number a;, and the momentum
spacing a;y+1 — a; can be either even or odd,

[3]3] [3]3]4] or [3]3]4]5]
o o oio e[4]5]e

even odd even

or

or ...
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If ¢ is even, however, the i-th spinon is assigned to the second of the two boxes
with number a;, and the momentum spacing a;+1 — a; has to be odd, as we can
insert only an even number of columns between the two spinons (recall that we
cannot stack two boxes with the same number in it on top of each other):

B4 o, Blae . Ba6l6]s]
oo O [Bale " eBBlTITle O -
odd odd odd

The spacings between the single spinon momenta are hence as stated in (2.4.34).

2.4.6 Generalization to arbitrary spin S

The projective generation introduced in Section 2.4.4 can be generalized to
arbitrary spin S = s:

v5) = (‘1’6‘5 [af, b*])% 0) . (2.4.37)

In order to write this state in a form similar to (2.4.1)—(2.4.5),

We) = D e§(en,.,zen) S SEL-s)y (2.4.38)

{z1,--,2sNn}
where
|=8)n = ®51 |5, —5), (2.4.39)

is the “vacuum” state in which all the spins are maximally polarized in the
negative 2-direction, we introduce re-normalized spin flip operators S* which

satisfy
1

(29)!

If we assume a basis in which S is diagonal, we may write

(aT)n(bT)(Qs—n) |0> _ (§+)n |S, _s> _ (2.4.40)

. 1 1
t=_- ab=——_ g+ 2.4.41
bb+ 1" < ( )

The wave function for the spin S state (2.4.37) is then with M = % given by

2s mM

sN
U5 (21, zan) = [ ] II (zi —2)* | [[ 2 (2.4.42)
i=1

m=1\ ij=(m—1)M+1
i<j

Note that these states are similar to the Read-Rezayi states [119] in the quan-
tized Hall effect.
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As for the S = 1 state discussed in Section 2.4.4, the projective construction
(2.4.37) directly implies several symmetries. The state |1/)§ > is translationally

invariant with ground state momentum py = —7N.S, a spin singlet, and real:
sN
U (21, zan) = U6 (21, 2en)| [ Gl2i), (2.4.43)
i=1

with G(z;) given by (2.2.16).

2.4.7 Momentum spacings and topological degeneracies for
arbitrary spin S

In Section 2.4.5, we have shown that the non-Abelian statistics of the Pfaffian
state (2.3.1), and in particular the topological degeneracies associated with the
Majorana fermion states in the vortex cores discussed in Section 2.3.3, manifests
itself in topological choices for the (kinematical) momentum spacings of the
spinon excitations above the S = 1 ground state (2.4.1). Specifically, we found
that if we label the single spinon momenta in ascending order by p; < p;+1, the
spacings p;+1 — p; can be either even or odd multiples of £ if i is odd, while it
has to be an odd multiple if 7 is even.

In this Section, we formulate the corresponding restrictions for the general
spin S chain with ground state (2.4.37). We will first state the rules and then
motivate them. Recall that spinons are represented by dots placed in the empty
spaces of extended Young tableaux, and that the momentum number a; of
spinon ¢ is given by the number in the box it shares a column with. For general
spin S, the tableau describing the representation on each site is given by

CITT 17,
—_———
2S boxes

i.e., a horizontal array of 25 boxes indicating symmetrization, which all contain
the same number.

If this number is n, the spinons we assign to any of these boxes will have
momentum number a; = n. Let us denote the number of the box a given spinon
1 with momentum number a; is assigned to, by b;, such that box number b; = 1
corresponds to the first, and box number b; = 25 to the last box with number
n in it:

2 2 7Y I 7 V7 722272 I 1 S (7 77 72 N 1
[ ] L] L]

bi=1 b; =2 b, =28
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(a) Ai41 — Q; odd
bi= 1 — 2
\
a;4+1 — a; even
(b)

ai+1 —a; odd

bij= 1 —= 2 — 3 25—1 == 28

a;4+1 — a; even

Fig. 2.10 Non-Abelian (SU(2) level k = 25) statistics in one dimension: flow diagram
for the (auxiliary) box numbers b;, which serve to describe the restrictions for the spinon
momentum number spacings a;4+1 — a; for the critical models of spin chains introduced
in Sections 2.4.1 and 2.4.6 with (a) S = 1, and (b) general spin S. The unidirectional,
horizontal arrows correspond to even integer momentum number spacings a;4+1 — @i,
while the bidirectional, semicircle arrows correspond to odd integer spacings.

We will see below that if a representation of a spin S chain with L spinons is
written in terms of an extended Young tableau, the first spinon with momentum
number a; will always have box number by = 1, and the last spinon with aj,
will have b, = 2S5. The restrictions corresponding to the non-abelian (SU(2)
level k = 25) statistics of the spinons are described by the flow diagram of the
numbers b; shown in Figure 2.10.

Let us elaborate this diagram first for the case S = 1, which we have already
studied in Section 2.4.5. In this case,

b — 1, for 7 odd,
2

, for i even.

(2.4.44)

For i odd, we may move from b; = 1 to b; 11 = 2 either via the horizontal arrow
or via the semicircle in Figure 2.10a, and a;11 — a; may hence be either even
or odd, respectively. For ¢ even or b; = 2, however, the semicircle is the only
available continuation, which implies that the spacing a;41 — a; must be odd.
For general S, Figure 2.10b implies that the spacings can be even or odd until
b; = 2§ is reached, which is then followed by an odd integer spacing a;+1 — a;,
as the semicircular arrow is the only possible continuation at this point. Note
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that for S > 1, the minimal number of spinons is two (these two spinons then
have an odd integer spacing as — a1), and that we cannot have more than 25
spinons with the same momentum number a; = n, as a;+1 — a; = 0 is even.

We will now motivate this diagram. To begin with, we generalize the for-
malism of extended Young tableaux to arbitrary spin S. The construction is
similar to the one for S = 1 outlined in Section 2.4.5. For each of the IV spins,
put a row of 25 adjacent boxes. Put these N tableaux on a line and number
them consecutively from left to right, with the same number in each row of 25
boxes representing a single spin. To obtain the product of some extended Young
tableau representing spin Sy on the left with a spin S tableau (i.e., a row of 2.5
boxes with the same number in it) on the right, we first recall

So®8=1S0—8|@®|So—S|+1®...® So+8, (2.4.45)

which implies that we obtain either 25y + 1 or 25 + 1 new tableaux, depending
on which number is smaller. In terms of extended Young tableaux, (2.4.36)
translates into

® [nn n| _ W;z r.z ® 0 ;Ll N g 0 nln|
So 25 boxes for So > S for So>S—1  forSp>5-1
)
o In;L [n] ® _@n n @ . nin n
for Sp >1 for So > % always
(2.4.46)

The first tableau on the right-hand side of (2.4.46) exists only for Sy > S,
the second only for Sp > S — %7 and so on. Note that the shape of the right
boundary of the extended Young tableaux for Sy does not determine which
tableaux are contained in the expansion of Sy ® S, as this depends only on the
number Sy — S. In the expansion (2.4.46), the 25 boxes representing a single
spin S always reside in adjacent columns. In an extended tableau, the numbers
in the boxes are equal or increasing as we go from left to right, and strictly
increasing from top to bottom. The empty spaces we obtain as we build up
the tableaux via this method represent the spinons. Note that we cannot take
a given tableau and just add a pair of spinons by inserting them somewhere,
as the resulting tableau would not occur in the expansion. In Figure 2.11, we
illustrate the principle by writing out a few terms in the expansion for an S = 2
chain.
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Fig. 2.11 Examples of products of extended tableaux for an S = 2 spin chain.

We now turn to the question what this construction implies for the momen-
tum spacings of the spinons. It is very easy to see from Figure 2.11 that b; =1
and a; is odd, and that by, = 2S5 and ay, is even (odd) for N even (odd).

Let us assume we have a spinon ¢ with momentum number a; and box number
b;. If we take S = 3, a; = 3, and b; = 2, this spinon would be represented by a
dot which shares a column with the second box with number 3 in it,

.
L)
by =2
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For the box number ;11 of the next spinon, there are only two possibilities:

(i) biy+1 = b;+1, which implies that a;+1 — a; is even. The spinons either sit in
neighboring columns with a;; = a;, or contain an even number of spin S
representations (with 2S5 boxes each) in between them. For our example,
the corresponding tableaux are

[BI3[3][3][3]3]4[4[5]5]5]5]
o and  HrTATAT4]5]5] and
bibit1 b bit1

i1 = G5 ai41 =a; +2

This possibility produces the unidirectional, horizontal arrows in Figure
2.10. If b; = 25, this possibility does not exist, and there are either no
further spinons or a;4+1 — a; has to be odd.

(ii) bj41 =25 —b; + 1, which implies that a; 1 — a; is odd. For our example,
the tableaux are

BIEREEE[B44] q BBEREEBAAE[5]5]56]6] q
o[4[4[4]4]e an o[4[4[4[4[5[5[6]6]6]6] e an
b; bit1 by bit1
a;+1=a; +1 a;+1=a; +3

This possibility produces the bidirectional, semicircle arrows in Figure
2.10.

This concludes the motivation of the flow diagram in Figure 2.10b. As in Sections
2.2.7 and 2.4.5, the single spinon momenta are given by

s 1
pi=7% <ai - 2) . (2.4.47)

This yields momentum spacings p;4+1 — p; which can be either an integer or an

. . 2
half-integer times 3.






Chapter 3

From a Laughlin state to the
Haldane—Shastry model

3.1 General considerations

In this section, we wish to derive, or maybe better obtain, the Haldane—Shastry
model (see Section 2.2) from the bosonic m = 2 Laughlin state and its parent
Hamiltonian (see Section 2.1.2). At first sight, this does not appear to be a
sensible endeavor. Let us briefly recall both models.

3.1.1 Comparison of the models

The Haldane—Shastry model describes a spin % chain with periodic boundary
conditions. The Hamiltonian is

21\ = S.S
H™ = <N> P (3.1.1)

10 — 1>
a<p o "B

where 1, = AR with a = 1,..., N are sites on a unit circle embedded in the
complex plane. Written as a wave function for the position of the M = % T-spin
coordinates z;, the ground state is given by

M

M
6 (21, oy 20M) :H(zifzj)z H Zi. (3.1.2)
i<i i=1
The bosonic m = 2 Laughlin state for M particles,
M M ,
1
wo(zl,...,ZM> :H(Zi—Zj)QHB_Z‘Zil 5 (313)
i<j i=1

is the exact ground state of the J-function potential interaction Hamiltonian

73
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M
V=> 67— z) (3.1.4)

i<j

in the lowest Landau level. Obviously, both models share the factor

[ - =) (3.1.5)

i<j

in their ground state wave function, a connection which was exploited recently
by Thomale et al. [139] in their study of the entanglement spectrum of spin
chains, but this seems to be about it. The Gutzwiller or Haldane-Shastry ground
state is invariant under P and T, under translations along the chain, and under
global SU(2) spin rotations (see Section 2.2.3). The model further possesses a
Yangian symmetry and is integrable (see Section 2.2.2). The Laughlin ground
state is up to a gauge transformation invariant under rotations around the
origin. The geometries of both models differ.

Let us proceed by clearing some obvious hurdles to our endeavor of connect-
ing the models. To begin with, the circular droplet described by the Laughlin
wave function (3.1.3) has a boundary, while the Haldane—Shastry ground state
describes a spin liquid on a compact surface. This problem, however, is easily
circumvented by formulating the quantum Hall model on the sphere (see Sec-
tion 2.1.6). Then the bosonic m = 2 Laughlin state for M particles on a sphere
with 2s = 2M — 2 flux quanta is given by

M

Yo[u,v] = H(uivj — u;v;)°. (3.1.6)

i<j

Within the lowest Landau level, it is the exact and unique zero-energy ground
state of the interaction Hamiltonian

s s s s
qh __ T T
Ve = § E § E Aoy Ay a’mgam4 6m1 +ma,m3z+my

mp=—8 Ma2=—8 M3=——8 Myg——3S8
- (s, m1; s, ma|2s,my + ma) (25, m3 + my|sms, sma), (3.1.7)

where a,, annihilates a boson in the properly normalized single particle state

|
(25+1) us+m
s+m)! (s —m)!

Ui 0w, 0) = (u, 0] af, [0) = \/47r( ™ (3.1.8)

and (s, mq;s, malj,m1 +ma) etc. are Clebsch-Gordan coefficients [12]. The
Hamiltonian (3.1.7) assigns a finite energy cost whenever the relative angu-
lar momentum of a pair of particles is zero. The expansion coefficients of the
polynomial (3.1.6) are still identical to those of (3.1.5).
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3.1.2 A hole at a pole

The Haldane—Shastry ground state wave function (3.1.2), however, contains an
additional factor [ ], z;. This is related to another problem. The dimension of the
single particle Hilbert space for the bosons on the sphere is 2s +1 = 2M — 1,
while the dimension of the single particle Hilbert space for the spin flips on
the unit circle is equal to the number of sites, N = 2M. The Hilbert space
dimensions of both models hence do not match. We can adapt the quantum
Hall state by insertion of a quasihole at the south pole (a, 8) = (0,1) of the
sphere. This leads to the wave function

M M
o [u,v] = H(Uivj — u;v;)° Hui, (3.1.9)
i<j i=1

on a sphere with 2s + 1 = 2M single particle states. It is the exact and unique
ground state of
H =yt 4 et (3.1.10)

with
U™ =Upal ja_, (3.1.11)

for Uy > 0 if we restrict our Hilbert space again to the lowest Landau level.
In (3.1.10), we have added a local repulsive potential Uy for the single par-
ticle state with m = —s, i.e., the state at the south pole, to the interaction
Hamiltonian (3.1.7). Note that both V" and U annihilate the ground state
(3.1.9) individually. The single particle Hilbert space dimensions match now,
25 +1=2M = N, and the expansion coefficients Cj, for the polynomials

1554 M
HS _ q1 anm
0 [Z] - E Cthw-,QM 21 - RM (3'1'12)
{q1,--sqm }
and
qH _ E q1,,25—q1 qm , 25—qm
0 [u7 U] - CQ17~~-7¢1M LG ceeUpp Uy (3'1'13)
{th,-»wQM}

are identical. Note that in both states, the amplitudes are non-zero only for
1 < ¢g; < N, ie., the ¢ = 0 state is never occupied. For the Haldane-Shastry
ground state, this means that we never flip a spin S; with momentum ¢ = 0,
which is a necessary requirement for the singlet property (see Section 2.2.3).
For the quantized Hall state, it means no particle occupies the m = —s state at
the south pole of the sphere. Note further that the Hamiltonians for the sphere
(3.1.10) and for the spin chain (3.1.1) are formulated in different spaces. The
Hamiltonian (3.1.10) with (3.1.7) on the sphere scatters bosons in a basis of
(angular) momentum eigenstates m, while the Haldane—Shastry Hamiltonian
(3.1.1) scatters bosonic spin-flips in a position space basis of sites 7).
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3.2 Hilbert space renormalization

There is yet another significant difference between both models. We noted above
that the coefficients in the polynomial expansions of the ground states (3.1.12)
and (3.1.13) are identical. The expansions of both states in terms of single
particle states, however, are different, due to different normalizations of the
polynomials. In the Haldane—Shastry model, the wave function acts on a Hilbert
space constructed out of spin flips at positions z;,

sy = Z VoS (z1, - zm) SE ST ). (3.2.1)
{z1,--2m } all N spins |

The polynomial Tlﬁzq describes the normalized single particle state

1

XSS D= ST DS D, (22

{=}

and we can rewrite the state vector (3.2.1) in terms of (3.1.12) as

6% = Y Cavvgn Sgo S 1. (3.2.3)

{q1,--sqm }

The polynomials u*T™ v~ by contrast, describe the unnormalized single par-
ticle states

g'm |¢frbao> = g'majn |O> 9 (324)
where
4 (s +m)! (s — m)!
Im = \/ ( 25 J)r 5)! ) (3.2.5)

is the normalization factor from (3.1.8) and af, is the associated, properly nor-
malized creation operator. The state vector for the quantum Hall state is hence
given by

‘w8H> = Z Cryts,..omyr+s Gmy - -+ Gmps a;fnl __.a;an |0> (32-6)

This means that not only the Hamiltonians, but also the coefficients in the
ground state vectors, are different. In particular, we we diagonalize the Haldane-
Shastry Hamiltonian (3.1.1) for a finite chain, we obtain a ground state vector
which is quite different from the ground state vector of (3.1.10) with (3.1.7).
If two models have different symmetries, different Hamiltonian and different
ground states, it is not clear what the connection should be.

If we think about the problem from a scholarly perspective, the conclusion
would probably be to abandon our undertaking. The scholarly approach, how-
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ever, is not always the most fruitful one. Haldane [63] invented the parent Hamil-
tonian (2.1.85) because he was looking for an economical way to write out the
coefficients of a Laughlin state for a significant number of particles without
expanding the polynomial, which he could then compare to the ground state
for Coulomb interactions. Along these lines, note that since the single parti-
cle normalizations g,, are known, it is easy to obtain the coefficients in (3.2.3)
from the coefficients in (3.2.6) and vice versa. So regardless of how different the
two states are from a scholarly point of view, there may be practical benefit in
exploring the common features.

In fact, even though the quantum Hall Hamiltonian (3.1.10) with (3.1.7)
cannot be used directly to obtain the Haldane-Shastry ground state (3.2.3), we
can construct a parent Hamiltonian for (3.2.3) from (3.1.10). To do so, consider
first the following theorem.

Theorem 3.1. Let |vg) be the eract and non-degenerate zero-energy
ground state of H,

H o) =0, (@|H[p)>0 V),
=0 if and only if |¢) = |tbo),

and let G be an invertible matriz, G~1G = 1. Then G~ 1)) is the ezact
and non-degenerate zero-energy ground state of GTHG.

ProOF. Trivially, GTHG G~ [)y) = 0. With |¢/') = G |), we have

(W|GTHG [) = (/| H[¢') 20V [¢) and hence V [¢)),
=0 if and only if [¢') = |¢o),
e, [9) =G o). D

Note that this transformation is not just a rotation of the basis. It completely
changes the Hamiltonian, but has the benefit of instructing us how to obtain
the zero energy ground state of the new Hamiltonian from the original one.

While this theorem points in the right direction, we are not aware of any way
of arriving at a convenient parent Hamiltonian by employing it directly. On the
positive side, if we choose

s s azn,awz
Q- H (g)omam, G~1 = H <gl> , (3.2.7)

m=—s m=—s

we obtain

Gil |¢8H> = Z Cm1+87---7mM+8 ainl a'JrrnM ‘O> ) (328)

{m1,....mnm}
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which is identical to the Haldane-Shastry ground state (3.2.3) if we were to

substitute! af, — S’;:_m On the negative side, the Hamiltonian GT H**G is un-

necessarily complicated. To obtain a convenient parent Hamiltonian for (3.2.8),
we avail ourselves of another theorem.

Theorem 3.2. Let [1pg) be a zero-energy eigenstate of the interaction
Hamiltonian

_ § : Tt
H - amlamz le,mg,mg,m4 amgam47

{m1,ma2,m3,ma}

and let G be an invertible matriz, GG = 1. Then G~ |+pg) is a zero-
energy eigenstate of

H = Z Glal al Grl‘/,7117,,12,,7137,,14 G ta,.a, G

m1 Tma
{m1,m2,mz,my}

PROOF. The property H |1)o) = 0 implies

Z Vinymama,ms Gma@my o) =0 Vmy, ma,

{ms,ma4}

and hence

Z le,mg,mg,m4 G_l Ams Amy GG_l |¢0> =0 levaa

{m31m4}

which in turn implies H'G™! [¢p9) =0. O

REMARK. The Theorem holds for n-body interactions as well.

The choice (3.2.7) implies G = G and

1
G la,G=gmnam, Ga, G ' = g—am, (3.2.9)
1
G™lal G = g—ain, Gal G7' = gnal.. (3.2.10)

Theorem 3.2 implies that the “renormalized” quantum Hall state (3.2.8) is a
zero-energy eigenstate of

1A It is not clear whether such a substitution is sensible, since the operators ain and
S:er obey different commutation relations. For this reason, we do not implement it,
but merely mention the possibility. We will see below that a similar transition from the
Fourier transforms of aI,L to local spin flips S} can be implemented sensibly.
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S S S S
_ P
V= Z Z Z Z Gy Ay Oy Oy Omy +ma,ms+ma

mi=—8 Ma2—=——8 M3=—S8 Mg——3S8

* Gma Gma (S:m1; S, m2|28,my + ma) (25, m3 + ma|sms, $14) Gmg Gm, -

(3.2.11)
Since (3.2.8) is likewise annihilated by (3.1.11), it is also a zero energy state of
H=V+U", (3.2.12)

We will see in Section 3.3.2 that (3.2.8) is a ground state of (3.2.12), but we
have not been able to deduce this from the considerations presented so far. For
our purposes, however, it is sufficient to know that (3.2.12) annihilates the state
(3.2.8).

With (3.2.5) and the explicit formula

V(25 —my +ma)! (25 + mq + ma)!
V(s =m1)! (s +m1)! (s — ma)! (s + m2)!

. \[5'(;35_1)1!)! (3.2.13)

(s,m1;8,ma|25,m1 +mg) =

for the Clebsch—Gordan coefficients [12], we obtain

my Oms (S, M1; 8, Ma|28, My + Mmao) = \/(23 —my +m2)! (28 + my + my)!

: 21 . (3.2.14)
(2s4+1)/s(4s — 1)!

The second factor in (3.2.14) does not depend on any m; and can hence be
absorbed by rescaling V' accordingly. This yields

s s s s
V=Y > > Y ahah,au,am, Vinememams (3:2.15)

mi=—8 Mag=—8 M3z=—8 Myg=—35
with

Vm17m2,m37m4 = Vm1+m2 '6m1+m2,m3+m4, (3.2.16)

Vin = (2s = m)! (2s + m)!. (3.2.17)

The essential simplification we have encountered so far is that the scattering
matrix elements Vi, ms.mgm, i (3.2.15) depend only on the conserved total
value of L%, mq +my = m3 +my, and not on the (angular) momentum transfer.

Even though the Hamiltonian (3.2.12) with (3.2.15) and (3.1.11) annihilates
the Haldane—Shastry ground state (3.2.8), we a still very far from having derived
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the Haldane—Shastry Hamiltonian (3.1.1). First, (3.2.15) scatters single particle
states in momentum space, since m = g — s is effectively a momentum quantum
number. Second, (3.2.12) is not likely to share the symmetries of (3.1.1). Third,
we do not even know whether (3.2.8) is the (non-degenerate) ground state of
(3.2.12).

3.3 Fourier transformation
3.3.1 Particle creation and annihilation operators

We proceed by transforming the interaction Hamiltonian (3.2.15) into Fourier
space. To this end, we define the transformations

N N
1 = S+m 1 Sr+m
m = 7= E (710)* " a0, af, = N E (7)™ al,, (3.3.1)
a=1 a=1

where N = 25+ 1, n, = eizﬁwa, and 7, = e iFe We may interpret « as site

indices of a periodic chain with N sites, and 7, as the positions of these sites

when the periodic chain is embedded as a unit circle in the complex plane.
The Fourier transformation yields

1

V= el Z aImalgaaQaal Vo, an,as,04 (3.3.2)

{051,(,!27&37(14}
with

S S S S
Val,a2,a3,a4 = E E : E E Vm1+m2 6m1+m2’m3+m4

mi=—s8 mg=—5 M3g=—8 Ma=—5§
. (na4)s+m4 (naa)erms (T—’a2)5+m2 (ﬁal)s+m1 (3.3'3)

for the interaction Hamiltonian (3.2.15) and
o) = G~ [vg")

= Z T M Z Cm1+37~~~7m1\4+5 (77041)3+m1 s (ﬁaM)ermM

al, ...al,, 10)
— Z VS (Mays -+ > Mang ) @b, - - al,, 0) (3.3.4)

{a1,...,anm}
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for the ground state it annihilates. In (3.3.4), we have used the definition of the
coefficients Ciy,+s, . ma—+s rom (3.2.1)-(3.2.3). Since ¥§°(Nays - -, Nan) vVan-
ishes identically whenever two coordinates 7, coincide, we are allowed to dis-
card configurations with multiply occupied sites. This yields a reduced Hilbert
space in which the boson creation and annihilation operators a! and a obey
the same commutation relations as the spin flip operators St and S~. We may
hence substitute one for the each other.

If we substitute af,, — ST, ao, = Sz, in (3.3.2) and (3.3.4), we find that
the Haldane-Shastry ground state (3.2.1) with (3.1.2) is annihilated by the
interaction Hamiltonian

1 C e
V= m Z S(;;S;rgsazsal Va170‘270¢31044 (335)
{061 7027(13,064}
with the matrix elements (3.3.3). For the on-site potential term (3.1.11), Fourier
transformation and subsequent substitution yields

U = %Uo S Stots (3.3.6)
where Siot is defined in (2.2.6). This term annihilates any singlet state, and in
particular the Haldane-Shastry ground state (3.2.1) with (3.1.2). It will not be
helpful in constructing a parent Hamiltonian, but it might be useful to keep in
mind that this term was required to single out the ground state wave function
on the quantum Hall sphere.

These observations, and in particular (3.3.5) with (3.3.3) and (3.2.17), are
the results of the considerations presented so far, and the starting point for the
analysis below.

3.3.2 Renormalized matrix elements

In this section, we wish to obtain an explicit expression for the scattering matrix
elements (3.3.3) of (3.3.5) for general V,,, by direct evaluation. For convenience,
we assume a1 # as and as # ay, as enforced by the spin flips in (3.3.5).

This transformation may look trivial at first, but it is not. When we perform
a conventional Fourier transform from real space into momentum space or vice
versa, both spaces are periodic. In particular, if we scatter a momentum across
the boundary at one end of the Brillouin zone, it will just reappear at the other
boundary. The distinguishing feature of the L” angular momentum quantum
number m is that it is not subject to periodic, but to hard wall boundary
conditions if we attempt to scatter m to values smaller than —s or larger than
s. This does not preclude a Fourier transformation, but it does lead to phase
space restrictions we have to take into account.
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The o-function in (3.3.3) allows us to eliminate the two summations over mg

and my in favor of a single summation,

s s
I
Va176¥2,a3,a4 = § E Vm1+m2 E

mip=—8 Mma=—=S8 q
“(100) T2 T (Mg ) T T (10, )T (0, )T, (3.3.7)
where
, min{s—m1,s+mo}
q g=max{—s—mi,—s+mao}
With m = mo +my, p = mgo — my, we write
Z/ s+3 min{ﬁjm,p+m} s+L %
q g=—s+3 max{p—m,p+m} q:_s+g+@
With ,
b+1 _ ,.a b+% . afé
Yar=" T_T T P p>a, (3.3.8)
s z—1 xr2 —x 2
we obtain
/ (30)*+ 51503 — (gg) st +15 -3
Z (1m34)1 = T —1 )
p (134)% — (M34) "2
where 734 = Nas—a, = NasTay- NOte that n3q # 1 as az # o4. Using the
periodicity in Fourier space,
(Na)™* = (%)SH, (3.3.9)
we can rewrite the second term in the numerator, and obtain
/ D1
D (134)* = —(03a)"TE T2 I (Im], s — ),
q
where - -
2 — -2
(|, a) = ) (ma)” = (3.3.10)

Substitution into (3.3.7) yields
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S S
Va17a270¢3;044 = Z Z Vm . (7742)S+m2 (7731)s+m1
mip=—8 ma=—=S8
S(=1) - () T EFE J(Imlas — aq). (3.3.11)
With my1 = ?, mo = mip

5, We can rewrite the sums as

even or odd

where the last sum extends only over even (odd) values of p for m odd (even).
(Since N = 2s + 1 is even, 2s is odd.) This yields

2s
VOC110¢2704310¢4 = Z Vin - (_1) : J(‘m‘aali - 054)

m=—2s
2s—|m|

.1 m P L m _P s+ Py 1
> a2)TEE (31) T T ()t
p=—2s+|m|
even or odd

(3.3.12)

We proceed by evaluating the sum over the terms which depend on p,

25—|m| 57%
P _p P
> (142)% (131) 7% (nsa)? = (m2)F
p=—2s+|m| k=— st lml
even or odd

where we have used (112) ™% = (712)*"! and 112 # 1. Substitution into (3.3.12)
yields

2s
VCK17<X270¢3,064 = Z Vin - J(|m|v a3 — 044) J(\m|,o¢1 - Olg)

m=—2s

: (77427731)s+% (77347712)S+%~

(3.3.13)
Writing out the factors in the second line yields
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m 1
m L s+ v EY —2g—Mm_ 2 —_m L 4 P 272
() % 7% (010 )T E T (110 2772 (10,) 2R = (M>
Nowx Nay
With the definition (3.3.10) we obtain
2s Im| _1lml [m ] _lml
v -y C(34) T —(sa)” 2 (m2) T —(m2)” 2
Q1,02,03,004 m 1 1 1 1
A m=—2s (M34)2 — (1134) ™2 (m2)% — (m2) "2
-3
: (Z‘“‘Z“B) . (3.3.14)
a2 oy

Note that we may omit the absolute value signs from m, as both fractions in
(3.3.14) change their sign with m. This yields

2s m o __ . m =m __ =m
Vou,as,a8,00 = Z Vin - Ty — Mo 7” 7a1~ (3.3.15)
"7044 - 77a3 77a2 - 77a1

m=—2s

3.3.3 An alternative derivation

Inspired by the result (3.3.15), we realize that there is an alternative derivation,
which will lend itself to generalization to the case S = 1. To begin with, note
that the matrix elements (3.3.3) may be written

2s
Vai,az,a,00 = Z Vi - Amsas,as Amiaz,ans (3.3.16)

m=—2s

where we have defined the sums

Amsar,a0= Z Z (ﬁaz)s+m2 (ﬁa1)8+m1 Omm +mas

mip=—s ma=—=5

Amsag,0= Z Z (M) (g )™ G g (3.3.17)

m3=—8 Mg=—S8

As these sums are complex conjugates to each other, it is sufficient to evaluate
Ao ,ae- With mg = m — my and the restriction —s < mg < s, we find
—s+m < my < s+ m. This yields

min{s,s+m}

AWL;(X17(12 = (ﬁa2)23+m Z (7712)s+m1, (3.3.18)

mi=max{—s,—s+m}
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where 712 = T, —ay- With (3.3.8), the sum gives for 0 < m < 2s

S

S ()t = (712)* 1! = (2)™

M2 — 1

i

mi=—s+m
and for —2s <m < 0

s+m

Z (7712)S+m1 _ (ﬁ12)

2 — 1

2s+1+m __ 1
mi=—s
With (7,)?**! = 1, we obtain

o
Aoy s = = sign(m) - o, o) 1

ﬁalnom -1
= —sign(m) - 7710‘1 _ T_’O‘Q ,
Nay — MNas
where we have defined
1, m>0,
sign(m)=4¢ 0, m=0,
-1, m<O0.

)

Since the signs cancels in the sum (3.3.16), we obtain (3.3.15).

3.4 The defining condition for the Gutzwiller state

3.4.1 Annihilation operators

85

(3.3.19)

(3.3.20)

So far, we have shown that the Gutzwiller or Haldane-Shastry ground state
[¢§®) given by (3.2.1) with (3.1.2) above is annihilated by the interaction Hamil-

tonian

1
V=_—" Z St s +S5 5 Val,ag,ag,cm

N2 Q4T ag Tz T
{a1,a2,a3,04}

with the matrix elements (3.3.15) and
Vin = (2s —m)! (2s + m)L.

If we now define an operator

m "70(2 776!1 B N 77(11 77012

arFas

N
% Z wg Sy = Z 77&1 So8o,
.

(3.4.1)

(3.4.2)
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we may rewrite (3.4.1) as

2s
V=Y VnAlLAn (3.4.3)

m=—2s

The fact that V' annihilates the Gutzwiller state [t{®) implies

(Wo°IV [4g7)

2s
D Vi (U6 AL A [955)

m=—2s

2s
3 Vil Am [5%)]* = 0. (3.4.4)

m=—2s

Since all the values V,,, for —2s < m < 2s are positive, and the norms of the
vectors by definition non-negative, (3.4.4) implies that the vectors A,, [1§®)
must vanish for all values of m € [—2s,2s]. Since A,, is further periodic under
m—m+ N and N < 4s+ 1, we have

A [955) =0 V. (3.4.5)

This a much stronger condition than we could have hoped to obtain. As an
aside, the form (3.4.3) implies that the spectrum of V' is positive semi-definite,
i.e., all the eigenvalues are non-negative, and hence that |¢{*) is a ground state.
Of course, we do not know whether it is the only ground state.

Since the Gutzwiller or Haldane—Shastry state |1){®) is real or invariant under
parity, i.e., under 1, — 7, as shown in Section 2.2.3, it is also annihilated by
the complex conjugates A,, of A,, for all m.

The state |¢pf®) is further annihilated by the operators

1 N
Qgs = 5 Z ﬁ&n‘im
m=0

N

1
=Y SyS5. Q[P =0 Va, (3.4.6)
B=1 Na — N

BF#a

which are obtained from the complex conjugate of (3.4.2) by Fourier transfor-
mation, as well as their complex conjugates:

N
_ 1 _
p=1"7
prra



3.4 The defining condition for the Gutzwiller state 87

Note that we would not need to exclude configurations with 8 = «, as the spin
operators exclude these automatically.

In Section 3.6, we will use the operators 2, to construct a parent Hamilto-
nian, which is translationally invariant, invariant under P and T, and invariant
under SU(2) spin rotations, for the Gutzwiller state |1{®). Not surprisingly, this
Hamiltonian will turn out to be the Haldane-Shastry Hamiltonian (3.1.1) plus
a constant to account for the ground state energy (2.2.5).

This implies that the Haldane-Shastry Hamiltonian is completely specified by
the condition (3.4.6) plus the symmetries mentioned in the previous paragraph.
Therefore, we will refer to (3.4.6) as the defining condition of the Gutzwiller or
Haldane—Shastry ground state. The universality of this condition is such that
both the parent Hamiltonian of the bosonic Laughlin state and the Haldane-
Shastry Hamiltonian secretly use (3.4.6) or (3.4.7) to single out the Jastrow
polynomial (3.1.5) as their ground state.

3.4.2 Direct verification

Before proceeding, however, we wish to verify the defining condition (3.4.6)
directly for the Haldane-Shastry ground state (3.1.2). This only takes a few
lines, and is reassuring after the acrobatics we performed to derive it. We have

N
1 e
QR sy =Y ———5.85 > Ui(en, 22, zm) ST ST L D)
=1 Noe — 1B (=
- 17~~>21\4}
B
N HS
V6" (Mas 18, 235 - - - 2m1) gt gt
Sy W ) gy,
(23,21} B=1 o
B
=0 (3.4.8)
since
M M
¢HS(77 ) 7] 3Z37"'ZM)
S B_ = (Na — Ng)Manp H(Uu - 21)2(7][3 - zi)%% H (2 — Zj)2
Ml = 118 i=3 3<i<y
vanishes for f = « and contains only powers 77}3, 7],%, . 77)/{13\/_2. Note that the

calculation for Q7° is almost identical, since

’(/}(P)Is(naanﬂaz?n'-'z]\/[) = nﬁwgs(n(wnﬁaz?nn-zl\/f)
fla — 18 ¢ N — 1B

vanishes also for # = a and contains only powers 73,73, ... ,név -1
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3.4.3 The role of the hole

In Section 3.1.2, we introduced a quasihole at the south pole of the quantum Hall
sphere, such that the quantum Hall and the Haldane—Shastry ground state wave
functions would resemble each more closely and the Hilbert space dimensions
of both models would match. We introduced an additional term (3.1.11) for
the quantum Hall Hamiltonian, which morphed into the total spin term (3.3.6)
under Fourier transformation, and has played no role since.

The attentive reader will have noticed that the creation of the quasihole has
played no role in our analysis up to (3.4.5) whatsoever. In other words, if we
had not created it, instead of (3.4.5) we would have found that the state

N=2M— N=2M—
=M = Y T ) S SE L)
{z1,--2m} all N spins |
(3.4.9)
with
M
N=2M10y ) = H (2 — )2 (3.4.10)
i<i

on a unit circle with N = 2M —1 sites is annihilated by A, as defined in (3.4.2),
A [0 =M1 =0 vYm. (3.4.11)

The state (3.4.9) is likewise annihilated by QY o, which can easily be verified
directly along the lines of (3.4.8), as

(])V:2M_1(77m77ﬂ, 23y ZM)
Mo = T M M
= —0ans(Na —n) [ [(na — 2:)* (s — 2:)* ] (2 — 2)
i=3 3<i<y

vanishes for § = a and contains only powers né, n%, . ,név_l for N =2M — 1.

The state (3.4.9) with (3.4.10), however, is neither real (and hence not in-
variant under P and T) nor a spin singlet. It is not annihilated by Q5 for any
a. It is not a sensible spin liquid, and we have no symmetries to construct a
Hamiltonian. We conclude that while the quasihole is not essential to the map-
ping of the model itself, it is essential to obtaining a sensible spin model via
this mapping.
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3.5 Rotations and spherical tensor operators

As mentioned in Section 3.4.1 above, we intend to use the defining condi-
tion (3.4.6) to formulate a parent Hamiltonian for the Gutzwiller ground state
(3.1.2). We wish the Hamiltonian to be invariant under translations, parity and
time reversal transformations, and SU(2) spin rotations. This last invariance
states that the Hamiltonian must transform as a scalar under spin rotations,
while 5° transforms as a tensor of 2nd order. When we construct the Hamil-
tonian, we will project out certain tensor components (like the scalar or vector
component) from operators which do not have simple transformation properties
(i.e., which consist of tensor components of different orders). For example, the
operator Si Sz + 54 S; consists of both a scalar component and a 2nd order
tensor component. In Section 4, we will have to analyze the tensor content of
more complicated operators, like SQQ(SES; +S557).

In this Section, we review the rotation properties of tensor operators [40, 12]
including the use of Clebsch-Gordan coefficients for projections onto certain
tensor components.

3.5.1 Representations of rotations

The angular momentum operator J is the generator of SU(2) rotations. Specif-
ically, the operator '
R, =e V%, (3.5.1)

rotates a state vector by an angle |w| around the axis w. Let |j,m) be an
eigenstate of J? and J? with eigenvalues j (j + 1) and m, respectively. Since
(3.5.1) commutes with the total angular momentum, the action of R, on this
state can only change m, i.e.,

J
Roljm)y= Y [j,m)d), (w). (3.5.2)

m/=—j

Since the states |j,m) form a complete basis set which does not contain any
subgroup of states which only transform under themselves, the matrices

d(j)

i (@) = (G, m/| €7 |j,m) (3.5.3)

describe an irreducible, 2j + 1 dimensional representation of the group SU(2)2.

2 For half integer j, these matrices constitute double valued representation of the rotation
group O(3), and a single valued representation of the larger group SU(2). For integer j,
they are single valued representations of both groups.
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3.5.2 Tensor operators

We can further use the operators (3.5.1) to rotate operators,
A — RLARG, (3.5.4)

such that the expectation value of an operator A in a state |¢)) is equal to the
expectation value of the rotated operator R, AR_! in the rotated state R, [1).
Certain operators transform as scalars under rotations, which means that they
commute with J and remain unchanged under (3.5.4). Other operators, like the
position vector r or the angular momentum operator J, transform as vectors.
In general, an irreducible tensor operator TU) of order j has 2j + 1 components

T(j)m, m = —j,...,J, which transform among themselves under rotations ac-
cording to
R,TW" RS = Z TW" ) (W), (3.5.5)

where the coefficients d%?m(w) are given by (3.5.3). Clearly, a scalar is an ir-
reducible tensor of order j = 0, and a vector is an irreducible tensor of order
j=1.

If we write out (3.5.5) for infinitesimal rotations

Re=e¢ e 1—iJe, (3.5.6)
and compare coefficients to first order in €, we obtain
J

{J,TU)’”} =y TO™ (| T [, m) . (3.5.7)

m/=—j

With (C.6), this implies

[JZ, TW”} —mTO™, (3.5.8)

[Ji,T@m} = ViG1+ D) —mm=1) 7O, (3.5.9)

where J* = J* +iJY. Equations (3.5.8) and (3.5.9) are fully equivalent to
(3.5.5), but much more convenient to use in practise.
Since a vector operator V' obeys the commutation relations

[T, V] = iehvEk,

(3.5.8) and (3.5.9) imply that the tensor components are (up to an overall
normalization factor) given by
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Vx4ivy
V2

Note that the J* eigenvalue of

VE VY

Vm:l —
V2

ym=t = y= ym=Erl = (3.5.10)
7@™ i’ m’)

is m+m’, as one can easily verify by either considering a rotation (3.5.5) around
the z-axis, or directly with (3.5.8),

T ) = [ O ) £ O™ )

(3.5.11)
= (m+m") TO" |/, m').
The tensor operator T )™ hence increases the eigenvalue of J* by m.
3.5.3 Products of tensor operators
Similarly, the J* quantum number m of a product of two tensors
O™ )™ (3.5.12)

is simply the sum of the J* quantum numbers of the individual tensors, m =
m1 + mg. We can again verify this by considering a rotation (3.5.5) around
the z-axis, or directly with (3.5.8). The product (3.5.12), however, is not an
irreducible tensor, but in general rather a sum of irreducible tensors of orders
lj1 — Jal, s 1 + Jo.

We can combine two tensors using Clebsch—Gordan coefficients, however, to
obtain a tensor of well-defined order j. Specifically, we can write

J1 J2
TO" = N N pU™ 0™ (G gy maljm) (3.5.13)

mi=—ji1 ma=—j2
where (j1, mq;j2, m2|j, m) are Clebsch—Gordan coefficients. To verify that the

left-hand side of (3.5.13) is an irreducible tensor of order j, consider its trans-
formation properties under a rotation (3.5.5) with coefficient matrices (3.5.3):
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R, T(j)mR;1
= Z R, T(jl)ml R;lRw T(jz)m2
mu,ms
- ) ™)™

’ /
ml,mz

R, (j1,ma; jo, malj, m)

Z <]1am/17.]27m/2| e_iJw |j17m1;j2,m2> <j17m1;j27m2‘j7 m>
mi,ma

N . \m . . . . . .
= D TUITITOTE N (Gl o, mplj ') (5, m e |, m)

! U 4 !
my,my J7%m

=5 70", (@),

(3.5.14)
Here we have used the completeness relations
J1 J2
Z Z |71, M3 j2, m2) (j1, ma; j2, ma| = 1, (3.5.15)

mi=—ji1 ma=—Jj2
J1+jz2 J

SN lmyGoml =1, (3.5.16)

J=lj1—jz2l m=—J
of the Clebsch—Gordan algebra, which are understood to be valid in a Hilbert
space with fixed j; and ja.

We can use the relations (3.5.15) and (3.5.16) further to invert (3.5.13). This
yields

Jiti2 J
- \Mo nmo, . . .
TUD™? = E E TO™ (,mljr, ma; ja, ma) . (3.5.17)

j=lj1—j2| m=—J

)y

T(j1

Let us denote the projection of a tensor A onto its j-th order component
tensor by {A},. Then (3.5.17) implies

yma2 j)ymitme <

{T(jl)’rrllT(jZ }j — T( j’ my + 7'71/2|j17 ml;jQ; m2> , (3518)

where 7™ i given by (3.5.13), i.e.,

min{ji,j2+m}
TO™ = 3 OO Gy s Gy, m — ma|j,m)
my=max{—ji1,—j2+m}
(3.5.19)
For m = m1 = mg = 0, we obtain
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-0 - 70
{T(Jl) T(]z) }j —
min{j1,j2} o (3.5.20)
(G,011,0:52,0) > TUITTED TG s, —mlj,0)

m=—min{j1,j2}

We will use this formula repeatedly below.
The tensors we can form out of up to three spin operators, and the tensor
decomposition of expressions like S;"S; or S%Sy Sy, are given in Appendix D.

3.6 Construction of a parent Hamiltonian for the
Gutzwiller state

We now turn to the construction of a parent Hamiltonian for the Gutzwiller
state (3.2.1) with (3.1.2) using the annihilation operator (3.4.6), i.e.,

N
1
QP [0§%) =0 Va, where Q0°=% ———S.5;. (3.6.1)
B=1 No — 1B
pa

The Hamiltonian has to be Hermitian, and we wish it to be invariant under
translations, time reversal (T), parity (P), and SU(2) spin rotations.

3.6.1 Translational, time reversal, and parity symmetry

The operator QESTQgS is Hermitian and positive semi-definite, meaning that all
the eigenvalues are non-negative. A translationally invariant operator is given
by

N
1 1
Hy=>Y owfar=% —— SESLSySy
a—1 a.By Moo — 7B N — Ty
aF#B,y
Z 1 + Q-
= Z Wasry (Sa + 2> SyS7T, (3.6.2)
a, B,y
aF#B,y
where we have defined 1 1

= e =115 N — 1y (3.63)
The transformation properties of the individual entities in (3.6.2) under time
reversal (T) are [40]
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T: N — O,0=17, S — 60S6=-5, (3.6.4)
and hence
Wapy = Wanyg, ST —-57, S~ = -8 S92 (3.6.5)
The operator (3.6.2) transforms into
OH O = > wap,y (—S; + ;) S5 Sq. (3.6.6)

By
a#Byy

We proceed with the T invariant operator

1
= (Hy+©Hy0) = H{= + H) 7, (3.6.7)

H0T:2

where

Hy~ = Zwaﬁﬁ< o (S5 5]+i{55+755}>

oo
1
= Z Waps <SZS§ + 4) ) (3.6.8)
a.f
B
1 _
Hy7 = 3 > wapySES;. (3.6.9)
a8,
N A

The transformation properties of the individual operators under parity (P)
are [40]

P: e — Mpdl=17,, S — ISIH=S5, (3.6.10)

and hence wagy —+ Ways. We proceed with the P and T invariant operator

1 _
HET = 3 (Hy +TTHS 1) = HY™= + Hy "7, (3.6.11)
where
1
PT= __ = PT# _
Hy'==Hy~, Hy 7 =7 Eﬁ Wapy (S5 97 +S557). (3.6.12)
@, P,y
atfEra

Since the operator S+S + S5 S+ is symmetric under interchange of # and -,
we can use (B.20) from Appendlx B to obtain
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1 1
PT# _ +g-— - g+ +g- - g+
Hy'7 =5 ) wass(SE85 +8587) — 5 D (i85 +8.57).  (36.13)
a#p a#p

Adding (3.6.8) and (3.6.13) together, we obtain with (B.15)

Sa5 N(N?-1) 1 -
" = ; — 2D (8585 +5.55).  (3.6.14
’ o;na—nm? 48 86;( S5 +8a55)- ( )

3.6.2 Spin rotation symmetry

The Haldane-Shastry ground state |1§®) is annihilated by (3.6.14), and is also
a spin singlet. Since the different tensor components of (3.6.14) yield states
which transform according to different representations under SU(2) spin rota-
tions when we act with them on [1){®), each tensor component must annihilate
[14®) individually.

With the exception of the last term, (3.6.14) transforms like a scalar under
spin rotations. With (D.2.4), we find that the scalar component of the last term
of (3.6.14) is given by

—% ;SQSB = —%Sfot+é§:si = —ésfotJr% (3.6.15)
[e% @

The scalar component of (3.6.14) is therefore given by

S.S N(N2 +5) 82
HYT £ — ot 3.6.16
o = (;, e —moP 8 6 (3610
We have hence derived that [i§®) is an eigenstate of
_ 2n? _ SaSs
HYS = 3.6.17
N2 Z \77a — g ( )
with energy eigenvalue
212 N(N2 +5
pus = 20 NIV +5) (3.6.18)

N2 48

In other words, we have derived the Haldane—Shastry model.

This derivation by (conceptually) straightforward projection onto the scalar
component is instructive as we will employ this method for the S = 1 spin chain
in Section 4.5. It has the disadvantage, however, that the information regarding
the semi-positive definiteness has been lost. There are two ways to restore this
information. The first is via an alternative derivation of the model without
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projection from (3.6.14), we will explain now. The second way is to derive first
a vector annihilation operator for |[¢{®), and then construct the Hamiltonian
from there, as explained in Section 3.7.

3.6.3 An alternative derivation

The operators Hy, Hy, and Hg) T constructed in Section 3.6.1 are all sums of
terms of the form ATA, and are hence all positive semi-definite, i.e., have only
non-negative eigenvalues. Since [¢g°) is an eigenstate with eigenvalue zero, it is
also a ground state of these operators when we view them as Hamiltonians.

We now wish to employ (3.6.14) to derive that |1§*®) is not only an eigenstate
of (3.6.17) with energy (3.6.18), but also a ground state. For this purpose, we
rewrite (3.6.14) as

1 _ _
H(l)DT =+ g(S:(_)tStot + StotSt—;t)

—stsﬂ Gl _1+é2 (SHS5 +S554)

2
a#B sl o
S.S N(N2+5
=> | BIQ ( 48+ ), (3.6.19)
oy Na — M3

where we have used SIS, + S5 S5 =1 for spin 5 . Since the left-hand side
of (3.6.19) is a sum of positive semi-definite operators which annihilate |i§*),
[1§'®) has to be a zero energy ground state of the right-hand side as well, i.e., a
ground state of (3.6.17) with energy (3.6.18).

3.7 The rapidity operator and more
3.7.1 Annihilation operators which transform even under T

We can use the defining condition (3.6.1) further to construct a vector annihi-
lation operator. First note that since

Q7 [¥6°) =0 Va,
|15®) is also annihilated by the Hermitian operator

Ho =008 = 3wy, (s + ) SEST. (3.7.1)

By
By#o
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which is just the operator (3.6.2) without the sum over a. Constructing an

operator which is even under T,

1
Hy =5 (Ho+ OHa®) = Hy~ + H,7,
with
1 1

T= __ 7 QZ T4 + o—
Hy= = wapp (Sasﬁ + 4) . HT# = 5 > wapySEST,

B#y

B#a By

and odd under P, we obtain

_ 1 = _
HET = 5 (HY -nHI1O) = H)™ + HY™,
where
5 . 1
PT= _ PT# _ +o—- _ g—qg+
HY™= =0, H" =1 > wapy(S58; - 5557).
BF#y
By#a
With
1 1 1 1
WafBy — WaryB = — — - - -
o " Na — N Na — Ty Na — N Na — Ty
( ) 1 1
=(=NaMp —Nally) ——
? 7 N =18 Na — 1y

1 1
Na — N Na — Ty

_ MNa 1 ( Na 1)

o — Ty 2 Na — Mg 2
:_1(77@+77ﬂ_77a+77'y>
Na =1 TNa — Ty

= na((na - 775) = (M — 777))

2

and S;S,; — S5 8% = -2i(Sp x S,)” (cf. (D.3.3)), we obtain

HET =5 3 s, sy
4 e Nae — 7B
.
B.y#a
= 23 BB (G % (S — S — Sp))
4 3 Na — 1B
Ba

(3.7.2)

(3.7.3)

(3.7.4)

(3.7.5)

(3.7.6)
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i Na + 13 Na + 13
= - ——=((Sax S iSg) S5 X Stot)
427’0‘77’5(( ) —i B Z 77/3( 8 tt)

B#a B#a
(3.7.7)

where we have used Sg x Sy = iS3. Since |¢§®) is a spin singlet, it is triv-
ially annihilated by the second term in the last line of (3.7.7), and hence also
annihilated by the first term, which is the z component of a vector. The sin-
glet property of the ground state implies that |[¢)§°) is annihilated by all the
components of this vector, i.e.,

D, Zna+zz {(s xsﬁ)ﬂsg] Do [08) =0 VYa.  (3.7.8)
B 1
BFa

This is exactly the auxiliary operator (2.2.42) we introduced in 2.2.5, where we
have further shown that

N N
N+1 5,85 N(N2+5)
=Y " DiD.+ ——5i, = § j :
—_ ror ‘na - 77,@|2 48

[\]

Ne)

This proofs once more that |[¢§®) is a ground state of (3.6.17) with energy
(3.6.18).

Equation (3.7.8) implies that the Haldane-Shastry ground state is further
annihilated by

N
N + 1
A=>"D, = Z nZ(s x S3), (3.7.9)
a=1

20

where we have used (B.16). This is the rapidity operator (2.2.8) from Section
2.2.2, which together with the total spin operator generates the Yangian sym-
metry algebra of the Haldane—Shastry model.

For completeness, we further wish to mention the scalar operator we can
construct from (3.7.2), which transforms even under P, and which yields the
Hamiltonian (3.6.16) when we sum over a. This operator is given by

1 _
HY" = o (Hy +THJI) = BT + H'7, (3.7.10)
where
_ _ 1 _ _
HY'= = HY=,  HI™ =2 37 wap (S35 +5557). (3.7.11)
B+
B,'Y;Za

The scalar component of this operator is with (D.2.5) and (D.2.4) given by
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S.S 1 SsS N2 -1
HPT _PaPkp 1 _ _,8 v + 7
Yo = Z \77 *maIQ f; (o = 1) (Ma — 1) 48

ByF#o

(3.7.12)
and annihilates the Gutzwiller state,
{H Yo l5%) =0 Vau

We do not believe that this operator is useful.

3.7.2 Annihilation operators which transform odd under T

Finally, we consider annihilation operators we can construct from (3.7.1), and
which transform odd under T,

H,—©H,0) = H'= + HT# (3.7.13)
with

= waps <2Sa{s+,s }+ [S S5 ])

5
Bt
1 Z Z
=5 D wass (S + 55)
5
pa
N2-1_ 1 ,
=~ Saty %: WappSs, (3.7.14)
pta
HY" = )" wap,SE8ES;7, (3.7.15)
B#Y
ByFo

where we have used (B.15). [¢{®) is hence annihilated by all the tensor compo-
nents of (3.7.13), which are readily obtained with (D.3.11), (D.3.1), and (D.3.3).
Let us consider first the scalar operator

Sa(Ss x S85)
Mo — 1) (N — 777)7

(3.7.16)

which is odd under P. With (3.7.6), we obtain
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T T +77
{HE}O Z e WZS (Sﬂ x Sv)
a%la

i Ne + 18
:fE ——F8.(85 X (St — Sa — S
6 Ne — 73 ( B ( tot 6))

Bt

i Na + N3
= - ——=8,(S5 x Siot), 3.7.17
62%_% (Sp x Stot) (3.7.17)
BFa
where we have used
Sa<Sﬁ X (—Sa — Sﬁ)) = Sﬁ(Sa X Sa) — SQ(SB X Sﬁ) =0. (3.7.18)

The operator (3.7.17) annihilates every spin singlet, and is therefore useless in
the present context.

The vector component of (3.7.13), however, constitutes a viable annihilation
operator for the Haldane—Shastry ground state,
A, = 5({H§:}1 +{HT#} )

_° Z Sao + Sﬁ Z 454(555) — 55(5455) — 5+(Sa5s)
| )
Bsﬁa

o —msl* (7l = 715) (110 = 715)
By#a

A JES) =0 Va. (3.7.19)

This operator is even under P. Summing over «, we find that the first term
annihilates every singlet, since

Z |S *5p ZS Z WaBp = Stot
a#ﬁ

Na — N>
ba

This implies that |¢§®) is further annihilated by the vector operator

. 45,(S58,) — S5(SaS,) — S (S.S5)

T:5Z{Hg#}1: Z v B v v )
5 (Mo = 118) (Mo = 71y)

atBrvta

(3.7.20)

This is a three spin operator, and has to our knowledge not been considered
before.
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Table 3.1 Annihilation operators for the Haldane—Shastry ground state. With the ex-
ception of the defining operator 2%°, which is the m = 2 component of a 2nd order

tensor, we have only included scalar and vector annihilation operators.

Annihilation operators for [¢{°)

Operator Equation Symmetry transformation properties
T P order of tensor transl. inv.
Stot (2.2.6) - + vector yes
Qs (3.4.6) no no 2nd no
PT

{HE }0 (3.7.12) + + scalar no
HYS — E§° (3.6.17) + + scalar yes
D, (3.7.8) + — vector no
A (3.7.9) + — vector yes
Aa (3.7.19) - + vector no
T (3.7.20) . + vector yes

3.8 Concluding remarks

The various annihilation operators for the Haldane—Shastry model are summa-
rized in Table 3.1.

The Haldane—Shastry model, including the operators presented in Section
3.7.1, have been known for a long time. In the work of Haldane and Shastry,
however, the model was discovered, while we derived it here. Unlike the discov-
ery, the derivation we presented here lends itself to a generalization to higher
spins, which is what we will pursue in the following chapter.

It is worth noting that the derivation of the model presented in Section 3.6.1,
which only assumes the defining condition (3.4.6), is significantly simpler than
the previously established verification of the model reviewed in Section 2.2.4
with Appendix B. The disadvantage of the present derivation, however, is that
it is not clear how to extract information regarding excitations via the formalism
employed.






Chapter 4
From a bosonic Pfaffian state toan S =1
spin chain

4.1 General considerations

In this section, we wish to use the bosonic Pfaffian state at Landau level filling
fraction v = 1 and its parent Hamiltonian (see Section 2.3), to construct a
parent Hamiltonian for the critical S = 1 spin liquid state introduced in Section
2.4. The Hamiltonian we construct should be invariant under all the trivial
symmetries of the spin liquid ground state described in Section 2.4.2, i.e., under
space translations, P and T, and SU(2) spin rotations. This task would probably
be beyond our means if we had not established a suitable technique in Section
3, when we derived the Haldane-Shastry Hamiltonian from a bosonic Laughlin
state and its parent Hamiltonian. The purpose of this derivation was really to
establish the technique which we will fruitfully use in the present analysis.

To begin with, we briefly recall the quantum Hall model and the spin liquid
ground state.

4.1.1 A model and a ground state

The wave function for the bosonic m = 1 Pfaffian Hall state [108, 54, 55]

N N
1 1
Yo(z1,22,.+.,2N) :Pf< )H(zi—zj)He_‘llzilz, (4.1.1)
T L i=1

where the particle number N is even, and the Pfaffian is is given by the fully
antisymmetrized sum over all possible pairings of the N particle coordinates,

Pf( ! )EA{ LIS ! } (4.1.2)
Zi — Zj Z1 — %9 ZN—-1 — ZN

It is the exact ground state of the three-body Hamiltonian [54, 55]

103



104 4 From a bosonic Pfaffian state to an S = 1 spin chain

N
V= Z 6@ (2 — 2;)0@ (2 — 21). (4.1.3)

i,j<k

In Section 2.4, we introduced an S = 1 spin liquid state described by a Pfaf-
fian. We considered a one-dimensional lattice with periodic boundary conditions
and an even number of sites NV on a unit circle embedded in the complex plane,
Na = R with o = 1,..., N. The wave function is given by a bosonic Pfaffian
state in the complex lattice coordinates z; supplemented by a phase factor,

N N
g‘:l(zth,...,ZN) ZPf< 1 ) H(Z’_ZJ)H Zi. (4.1.4)
i=1

Zi T 25 ) T
v J 1<J
The “particles” z; represent re-normalized spin flips

S2 +1

St= 5 St (4.1.5)
which act on a vacuum with all spins in the S* = —1 state,
W= = > v e, zw) S ST FD) (4.1.6)

where the sum runs over all possibilities of distributing the N “particles” over
the N lattice sites allowing for double occupation, and

|-1)y =3 |1,-1),,. (4.1.7)

As for the Laughlin state in Section 3.1.1, the circular droplet described
by the quantum Hall wave function (4.1.1) has a boundary, while the S = 1
ground state (4.1.6) with (4.1.4) describes a spin liquid on a compact surface. To
circumvent this problem, we formulate the quantum Hall model on the sphere
(see Section 2.1.6). Then the bosonic m = 1 Pfaffian state for N particles on a
sphere with 2s = N — 2 flux quanta is given by

N

Yolu,v] = Pf <1> [T wiv; — ujvs). (4.1.8)

UV — U4
v I i<y

Within the lowest Landau level, it is the exact and unique zero-energy ground
state of the interaction Hamiltonian
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S S S S S S
IS DD DD DD DD DR
mMmi1=—8 Ma2=—8 M3=—8 Myg=——8 M5=—8 Meg=—38
al al al am. am.am. 0
m1 Ymo YmsUmabmsUme Ymi+ma+ms,ms+ms+me
- (s,mq; 8, m2|28,m1 + ma) (28, M1 + Mma; s, m3|3s, M1 + ma + ms)
- (38, my + ms + mgls, myq; 28, ms + mg) (28, ms + mg|s, ms; s, Mg) ,
(4.1.9)

where a,, annihilates a boson in the properly normalized single particle state

1
U, o(u,v) = (u,v]al, [0) = — u*Fmys—m, (4.1.10)

m,0
m

with

4 (s +m)! (s — m)!
o= T e

and (s, m1;s,mz|2s — I, my + mg) etc. are Clebsch-Gordan coefficients [12].
The differences between the Pfaffian Hall state (4.1.8) and the spin liquid
state (4.1.4) are almost in exact correspondence to the differences between the
Laughlin state (3.1.6) and the Haldane—Shastry ground state (3.1.2). We will
employ the same techniques to adapt the quantum Hall model to the spin chain.

4.1.2 Creation of a quasihole

The wave function of the spin liquid state (4.1.4) differs from the quantum Hall
state in that it contains an additional factor [, z;. We can adapt the quantum
Hall state by insertion of a quasihole at the south pole of the sphere. This yields

N N
1
aMu,v] = Pf <) H(uivj — u;v;) Hui, (4.1.12)
Uiy — Ui ) 5 i=1
on a sphere with 2s = N — 1. It is the exact and unique ground state of
H = Vet 4 gt (4.1.13)
with
U™ =Uyal a_, (4.1.14)

for Uy > 0 if we restrict our Hilbert space again to the lowest Landau level.
Note that both V" and U annihilate the ground state (4.1.12) individually.
The single particle Hilbert space dimension of the bosons on the sphere is now
equal to the dimension dimension of the single particle Hilbert space for the
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spin flips on the unit circle, 2541 = N. The expansion coefficients Cy, .. 4, for
the polynomials
S=1
o 2] = Z Corpooan 21 ---Z?VN (4.1.15)
{q1,--san }
and
Pl = 3 Coay ul ol ol (4.1.16)

{q1,--,9n}

are identical.

4.2 Hilbert space renormalization

While the coefficients in the polynomial expansions of the ground states (4.1.15)
and (4.1.16) are identical, the expansions of both states in terms of single particle
states are not. The state vector for the quantum Hall state is given by

g") = Z Crits,omu+s Gmy - Gmas a;rnl = -a;rnN 10) (4.2.1)

{m1,....mn}

where ¢,, are the normalizations (4.1.11) of the polynomials u$t™¢p$~™ in
(4.1.10). In the spin chain, the polynomials z? require no such normalization
factors, as discussed in Section (3.2).

To adjust the quantum Hall state, we renormalize the Hilbert space using
Theorem 3.2 of Section 3.2 with the same operators G given in (3.2.7). This
yields that

G WSH> = Z Crmyts,...my+s aIm ---aInN |0> (4-2-2)

{mi,....mn}
is an exact zero-energy eigenstate of
S S S S S S
DD DD DD DD DS
mMmp=—8 Ma2=—8 M3=—8 Myg=——8 M5=—8 Mg=——3S8
calal al . ame Gy O
m1 YmoYmzgUmygUmsUme “mi+mo+ms,mat+ms+me 9m19mo9ms
- (s,my; 8,ma|28,m1 + ma) (28, m1 + Mma; s, m3|3s, m1 + ma + m3)

- (38, my + My + mgls, my; 28, ms + mg) (28, ms + mg|s, ms; s, mg) ,

*Ima9msIme (423)

Since (4.2.2) is likewise annihilated by (4.1.14), it is also a zero energy state of
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H=V+U". (4.2.4)
With (3.2.5), (3.2.14) and the explicit formula

(25,m1 + ma; 5, m3|3s, m1 +ma + m3)

V(38 —m1 —ma —mg)! (3s + m1 + ma + mg)!
V(28 —m1 +ma2)! (25 + my + m2)! (s — m3)! (s + m3)!

L \/s (253.(29! (_4;! 1)! (4.2.5)

for the second set of Clebsch—Gordan coefficients [12], we obtain

G Gma Gms (8, M5 8, m2|25, My + ma) (25, m1 + ma; s, ms3|3s, my + mg + ms3)

2 2 \?
=+/(3s — - - (3 ! .
\/( §=ma —my —ma)l(3s + my +ms +my) 3s(6s —1)! <25+1)

(4.2.6)

The last two factors in (4.2.6) do not depend on any m; and can hence be
absorbed by rescaling V' accordingly. This yields

S S S S S S
D DD DI DD DI DR DRI
mi1=—8 Ma2=—8 M3=—8 Mg4——8 M5—=——8 Mg=——3S5
: Vm1,m2,m3,m4,m5,m6 (4'2'7)
with
le,MQ,m37m4,7rls,m6 = Vmi+motms '5m1+mz+ms,7n4+ms+mev (4-2-8)
Vin = (3s —m)! (3s + m)L. (4.2.9)

Note that the scattering matrix elements Vi, my.mis,ma,ms,me it (4.2.7) depend
once again only on the conserved total value of L*, mi +mo+m3 = mg+ms +
me, and not on any of the (angular) momentum transfers. This constitutes an
enormous simplification.
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4.3 Fourier transformation
4.3.1 Particle creation and annihilation operators

We proceed by transforming the Hamiltonian (4.2.7) into Fourier space, using
the transformations

(1) ™al,, (4.3.1)

2 -
-

N
1
a :—g 10) e, al = —
m \/NQZI(WOL) o m

where N = 2s+ 1, and n, = ¥ We again interpret « as site indices of a
periodic chain with N sites, and 7, as the positions of these sites when the
periodic chain is embedded as a unit circle in the complex plane.

The Fourier transformation yields

1
_ 3 gt af
V - N3 aagaa aa4ao¢3aa2aa1 Va176¥27a37a4,a57046 (432)
{a1,a2,a3,a4,05,06}
with
s s s s s s
Val,a2,a3,a4,a5,a6 = § § E : E E §

Mmi=—8 Ma=—8 M3g=—8 M4=—8 M5=—8 Mg=—35

Vm1 +ma+m3 5m1 +ma+mg,mat+ms+meg

(Mas)* T (M5 )T (Maa)* T (Tlag )T (g )T (7 )T
(4.3.3)

and V,,, given by (4.2.9) for the interaction Hamiltonian, and
o) = G [wg")

1 ST+m STm
= Z ——N Z Conyts,imnts (Mar) T o (T )T
{on,.an} VIV {ml,m, mn}

= Z 1/)521(7]@17""77(1N)a:r11"'aLN |O>v
{a1,...;,an}

(4.3.4)

where Y5~ (1ay, - - - s May ) is given by (4.1.4), for the ground state it annihilates.
In (4.3.4), we have used the definition of the coefficients Cyy, 45, my+s from
(4.1.15).
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4.3.2 Substitution of spin flip operators for boson operators

The formulation of the model in terms of position space operators allows us to
substitute spin flip operators for the creation and annihilation operators, and
thus to turn our boson model into a spin model. For the S = 1 model, this step
is not as trivial as for the S = 5 model treated in Section 3, as the usual spin
flip operators do not obey the same commutation relations as bosonic ladder
operators in the subspace where each site can be doubly occupied at most. The

relation
Sy (SHr, -1y, =n(SH" 1, -1),, forn=0,1,2, (4.3.5)
which follows directly form the definition (4.1.5), instructs us how to proceed.

Since
a(a)"10) = n (a")*~"0),

we may substitute af, — ST, an, — S5, in the Hamiltonian and a, — S+
|0) = |—1), in the ground state. In other words, the non-Abelian S=1 spin
liquid state (4.1.6) with (4.1.4) introduced in Section 2.4, is annihilated by

V=_— Z St St St 85.585.55 Var.asassanasias (4.3.6)

{a1,a2,a3,04,a5,06}

with the matrix elements (4.3.3). For the on-site potential term (4.1.14), Fourier
transformation and subsequent substitution yields again

H 1 -
U = <Us St St (4.3.7)

This term annihilates any singlet state, and will not be helpful in constructing a
parent Hamiltonian. We will keep in mind, however, that the original term was
required to single out the ground state wave function (4.1.12) on the quantum
Hall sphere.

Note that this substitution does not just amount to a renaming of operators,
as it did for the spin % chain discussed in Section 3. In the present case, it effec-
tively renormalizes the single particle Hilbert spaces once more, and hence leads
to a different model. To see this, compare the normalizations of “unoccupied”,
“singly occupied”, and “doubly occupied” sites in the S = 1 spin chain,

(1,-1| 8,851, -1) =
(L1 (S7)%(SH)? L, -1) = 1,

l\D\H

to those of bosons,
(0]a"a'™ |0) = n!. (4.3.8)
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The difference does not just amount to a different overall normalizations of the
states. If we were, for example, to renormalize the already renormalized spin
operators S, — v/2S,, we would obtain
<1a _1| g;g;zr |17 _1> = la
(L =1 (S)%(S5)% 1, —1) = 4.
This would match (4.3.8) for n = 1, but not for n = 2. The amplitudes of the

individual spin configurations in the spin state vector are hence different from
those of the corresponding amplitudes in the boson state vector.

4.3.3 Many body annihilation operators

Since the scatting elements (4.3.3) depend only on the total angular momentum
quantum number m, we can rewrite (4.3.6) as

3s
V=Y VuB}Bn, (4.3.9)
m=—3s
where V,,, is given by (4.2.9), and
B,, = B}, + B, (4.3.10)
with
1 N
B7, = > BliarassosSasSasSars (4.3.11)
\/ﬁ i 1,002,003 3 2 1
a1 FazFazFal
3 al 2
B;L = I Z B;'Oq o2 (S(;z) SDTl’ (4312)
N3 0170;2:1
] Fa

The coefficients in (4.3.11) and (4.3.12) are given by

S S S
B’?fl;a1;0&27(13: Z Z Z (ﬁa3)8+m3<ﬁa2>s+m2(ﬁal)s+m1
mi=—8 Max=—8 Mm3z=—=S§
: §m,m1+m2+m3a (4313)
S S S
B;;al,afz: Z Z Z (77042)S+m3(ﬁaz)s+m2(ﬁa1)8+ml
mp=—8 Ma=—8 M3=—3S8

’ 6m,m1+m2+m3~ (4314)
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The factor 3 in the definition (4.3.12) of B stems from the three possibilities
of two coordinates being equal.

4.3.4 Evaluation of B7

mio , 02,003

In this section, we evaluate

Bi;al,ag,ag = Z Z Z (77!13)5+m3 (ﬁaz)Serz (7_70&1)8+m1

mip=—8 Ma=—8 M3=—3S8

’ 6m,m1+m2+m3 (4315)
subject to the condition that none the coordinates oy, s, and ag coincide.
To begin with, we carry out the sum over mgs, and obtain

/ !/
Bi;al,ag,ag = Z (ﬁa1)8+m1 Z (ﬁas)s+m—m1—m2(ﬁa2)s+m2’ (4316)

mi m2

L,

1

where the primed sums are restricted such that all the exponents of the 7,’s
are between 0 and 2s. With —s < m — m; — my < s, we have

min{s,s+m—m1}

Iml = (ﬁas)2s+miml Z (ﬁ23)5+m2

mo=max{—s,—s+m—m1}

{Am_ml;ama3 for —2s <m —my < 2s,

0 otherwise,
ﬁmfml _ ﬁmfml
X2 ~as for m <mq < 2s+m,
Nay — Nag
= poLTm — g 4.3.17
—%27 70‘3 for —2s4+m <m; <m—1, ( )
77&2 - 77a3
0 otherwise,

where we have defined a3 = ay—a; = Taslas and used the result (3.3.19) for
the sum (3.3.18) from Section 3.3.3.

For the evaluation of the sum over m;, we consider three different regimes
for m.

a) —s < m < s. In this regime, m — m; changes sign as we sum over m;. We
obtain
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77erm
— o =s+m —s+m
B’f;féﬁahamaz = Z M2 t+ Z M2 !
17 77&3 mi=—s mi=m
+ same term with 7o, < 7as

Ty ™ < My =1 1 ﬁi§m>
Naz — Mo M2 — 1 M2 — 1

+ same term with 7a, < 7as

2— —=s+m —=s+m
= ez Tew Tler 4 a6 term with Tes < Tevs

Noy — 77013 77 77(12

2,',,9+m+1 2779+m+1
= = — + —= —
(nou naz)(naz - 776!3) (77&2 77&3)(770(3 - 77a1)
2 ( Mo Tl )
TI(XQ 77a3 ﬁal - 77](12 ﬁa1 - 77]0(3
2ns+m+1 Qﬁgjm+1

- = + = —
(77@1 770¢2)(77042 - 7703) (7]042 77043)(77043 - 77041)

2% s+m+1
N Mo

(77063 77011)(77041 - 77042)

= 2Q7 01 .an.00° (4.3.18)

where Q7.. -a1,00,a5 18 strictly periodic under m — m+ N with N = 25+ 1.
b) —3s < m < —s. Since —s < my < s, this implies that we are always in
the first regime in (4.3.17), m < m; < 2s+ m. This yields

775+m 2s+m
# =—2— Z ﬁf;ml + same term with 7a, < Mo,

mia,a2,03
Nao = Nay
mi=—s

ﬁerm ﬁs+m _ 1
= &2 12 + same term with 7o, < oy

77(12 - ’F](Xs 7]12 -1

(4.3.19)

Qm ;Q1,Q2,Qe3 "

¢) s <m < 3s. Since —s < my < s, this implies that we are always in the
second regime in (4.3.17), —2s +m < m; < m — 1. This yields

+m b

Mo +

Bzfi 5, 02,3 = _ﬁ Z UTQ " -+ same term Wlth 77062 Ae 770(3
a2 a3

mi=—2s+m
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=s+m s

S dlD DI cl

77&2 77043 mi=—2s+m—1
+ same term with o, < Mo,

ﬁs-i-m 1— ﬁs—i-m
SR L 12 1 same term with 7a, < fa,

ﬁ!m - ﬁazs M2 — 1

(4.3.20)

Qm;al,ag,a3 :

Note that since Qis;ah

associate the cases m = +s. As a curiosity, note further that Qfﬂ;aha%% =1
(cf. (B.7) of B).

as,as = 0, it does not matter with which regime we

4.3.5 Evaluation of B=

mioe , 02
We now evaluate
S S S
= _ § E § = s+m3 (= s+mao (= s+m
Bm;al,az - (77a2) d}(77012) 2(77041) !
mi=—8 Ma=—8 Mm3z=—=S§

“ O, my +matms (4.3.21)

subject to the condition oy # as.
To begin with, we carry out the sum over mgs, and obtain

j— — 4 — —
B;’L;Otl;OZQ = Z (77&1)8+m1 Z (na2)25+m m17

mi ma

/ /
= (M) ()T L, (4.3.22)
mi mo

/

where the primed sums are restricted such that all the exponents of the original
flo's in (4.3.21) are between 0 and 2s. With —s < m —my — my < s, we have

min{s,s+m—m1}

%;HZ 3 1

mo=max{—s,—s+m—my}

N+m—m; form<m; <2s+m,
N—-—m+m; for —2s+m<m; <m-—1, (4.3.23)

0 otherwise,



114 4 From a bosonic Pfaffian state to an S = 1 spin chain

For the evaluation of the sum over m;, we again consider three different
regimes for m.

a) —s < m < s. In this regime, m — m; changes sign as we sum over m. We

obtain
B= m—1 s
—t = N (N—mAm)a ™+ Y (N +m—ma) ™
oz mi=—s mi=m

S —s+m =5+m
_s+m Me  —1 1-—1n5;
=N +m —-m _
Z fha < M2 — 1 M2 — 1

mip=—s8
| S ——
=0
m—1 s
+OY L mams ™ = Yy g™ (4.3.24)
mi=—s mi=m

With the formula

b+2 _ wa+1

b>a, (4.3.25)

Eb:qa:q: (b+ 1)z —qz® T
= z—1 (x—1)2

we obtain for the last two sums in (4.3.24),

-1 _ _ _
N oy, _ M " s 7 — i
Z Milhe = =21 (e — 1)
my——s M2 M2
- —s+mq __ (S + 1) - mﬁf;m 7712 - ﬁi;rerl
- Z mino - — — 2
T M2 —1 (M2 — 1)
Summing up all the terms we find
B= _ostm—1 (2m—1 9 My — o
e e M2 — 1 (M2 —1)2
_ etml (2m +1 9 g " - 1)
o T2 — 1 (M2 — 1)
=5+m =s+m+1 _ =s+m-+1
—(2m+1) Nas _ 277a1 _ 17(!22
Nay = Nas (77041 - 7702)
=(2m+1) Prniayas T 2Qm:01 00 (4.3.26)

where we have defined
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Fs+m Fstm+l _ ms+m+1
P o waB - o (4.3.27)
mio,ey — — — : = — — -9
pe Nar = Nas e (77a1 - 77a2)2

b) —3s < m < —s. Since —s < my < s, this implies that we are always in
the first regime in (4.3.23), m < m; < 2s+ m. This yields

B= 2s+m
—EEE = D (Wamem) ™
Tz mi=—s

_ (N +m) Ta™ =1 (N+m)s™+s ™ — o

M2 — 1 M2 — 1 (T2 —1)2
N 1 et
S e =, (4.3.28)
2 — 1 (M2 —1)
and
—s+m =s+m+1 _ =s+m+1
;;a17a2:_(N+m+8+1)7na27 +T](X17 j’]azz
Nay — Moy (noq - naz)
=—(N+m+s+1)Prasa — Qrmayon (4.3.29)

¢) s <m < 3s. Since —s < my < s, this implies that we are always in the
second regime in (4.3.23), —2s + m < my < m — 1. This yields

B: S

miy,oe2 —s+mq
—stm—1 E (N —m+m) 7,

az mi=—2s+m

S

= > (Wemem)pd™

mi=—2s+m—1

1— =s+m
_ (N _ m) _ ?712
2 —1
LA+ N —m)a™ e =™
2 —1 (12 — 1)?
_N-mdts apm -1 (4.3.30)
M2 — 1 (2 —1)2" o
and
=s+m =s+m-+1 =s+m-+1
= N Mo —Na
myog o :N_m+s — 2_ + 1_ _2 4.3.31
ot ( ) Ny — Nas (Ual - 77(12)2 ( )
=(N—=m+35)Praas — Qmeay.cn- (4.3.32)
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Note that since Q7 =0 and

SiQ,02

Q: _ Nay — Nay _ 1 —_p
—Ss;1,002 - - —S8jQ1,02)

(ﬁoq - ﬁ@2)2 (T_](M - 77042)

it does not matter with which regimes we associate the cases m = +s. The
expressions (4.3.26) and (4.3.29) are equal for m = —s, and (4.3.26) and (4.3.31)
are equal for m = s.

4.4 The defining condition for the S = 1 Pfaffian chain

4.4.1 Derivation

In Section 4.3, we have shown that the non-Abelian S = 1 spin liquid state
(4.1.6) with (4.1.4) introduced in Section 2.4, is annihilated by

3s
V= > V.B}Bn, (4.4.1)
m=—3s
where
Vin = (3s — m)! (3s +m)! (4.4.2)
and
B,, = B7, + B, (4.4.3)
with
1 N
/N3 o 1,002,003 3 2 1
a1 FasFazFay
3 al 2
B; = > Brias (Sa,) S (4.4.5)
N3 al;‘;?:l
a1 Fa2

We calculated the coefficients in (4.4.4) and (4.4.5) in Sections 4.3.4 and 4.3.5,
respectively, and found

7Q§§0¢170¢2,@3 for s <m < 3s,
Bﬁal,a%% = QQﬁ;ahabaB for —s <m <s, (4.4.6)

_sz;al,amas for —3s <m < —s,

and
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(N=m+5)Prnarar— Qmaye, for s<m<3s,
Broron = (2m+1) Ppiay a0 +2Q5,. o1,0p  fOT =8 <m <,
—(N+m+s+1)Prayas— Qnaya, for—3s<m< —s.
(4.4.7)
Q7 i anan is defined in (4.3.18), and Ppa,,a, and Q.. o, are defined in
(4.3.27). All three are periodic functions of m, i.e.,

Q7 - Q7
m~+Njoq 002,03 miaq,as,030
Pm—i—N;al,ag = Pm;a17a27 (448)

m+N;a1,a2 — Umyag,an”

The property that |1/)5g:1> is annihilated by V implies with (4.4.1) that

3s
VI = 3 V(7| BB )

m=—3s

3s
S V[ B [0§7H)| = 0. (4.4.9)

m=—3s

Since all the values V,,, for —3s < m < 3s are positive, and the norms of the
vectors by definition non-negative, (4.4.9) implies that the vectors B, [1)§=")
must vanish for all allowed values of m. In other words,

B [0~y =0 Vm € [-3s,3s]. (4.4.10)

This implies that |¢g:1> is further annihilated by any linear combination of the

B,,’s, and in particular also those in which the terms involving Q
and Q4 N.q,.a, cancel. These include for —s <m <'s

m+N;a,02,03

By + 2By = [2m +1) — 2(s + m +1)] Z Prar.as (S2,)° S

arFas
N
=-N > Praras ( S2)* S0, (4.4.11)
ay#az
and for m=s+1
N
Biy1 =B =2N > Pijrara (S) S, (4.4.12)
ayFas

Given the periodicity of Pp,.a,,a, in m, (4.4.11) and (4.4.12) imply that
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P |wg=ty =0 Vm, (4.4.13)

where we have defined

N
3" Praras (83,)° 82,

P, =
oy Fan
N =s+m
=3 e (57)%s5 (4.4.14)
Ny — Nag
oy Fas

Since the spin liquid state ’1/159 :1> is invariant under parity, i.e., under 1, — 7q
(see Section 2.4.2), it is also annihilated by the complex conjugates Py, of P,
for all m.

The non-Abelian S = 1 spin liquid state (4.1.6) with (4.1.4) is further anni-
hilated by the operators

ngl =— ntmp,,

N
Mo
=y (S2)2S5. Q7' |[y§=')=0 Vo, (4.4.15)

which are obtained from the complex conjugate of (4.4.14) by Fourier transfor-
mation, as well as their complex conjugates,

- 1
B=1 N — 13
B#

(S2)%S5, Q57 ui) =0 VYau (4.4.16)

Note that we would not need to exclude configurations with 8 = «, as the spin
operators take care of this automatically.

In Section 4.5, we will use the operators 5= to construct a parent Hamilto-
nian, which is translationally invariant, invariant under P and T, and invariant
under SU(2) spin rotations, for the non-Abelian S = 1 spin liquid state |1/)OS:1>.
The analysis will imply that |¢§:1> is completely specified by the condition
(4.4.15) plus the the mentioned symmetries. Therefore, we will refer to (4.4.15)
as the defining condition of non-Abelian S = 1 spin chain we introduce in
Section 2.4.



4.4 The defining condition for the S = 1 Pfaffian chain

4.4.2 A second condition

119

It is worth noting that the condition (4.4.13) with (4.4.14) implies that the

remaining terms in B, annihilate |z/;§ =1

Qm [¥5=")

where we have defined

=Qu|¥5~") =0 Vm,

1 N

Qm = g Z Qmal,a27a35a3 [e3:] 0¢1+ Z Qm He e}
,o2,03=1
a1 bas s Ao 7o
N ,r]s+m+1
- _ o g5 5
Ot],(l;E}:l (Mas = Naa )Moy — Tan) @ %27
arFasFazFtal
N
g™t — ettt )2 g
- Z ( ) ( az) oy
arFas 77041 7’042
N ns+m+1
= M —S5.. 5.5,
al,aggfl (na3 77041)(770&1 777042) asTarTen
ayFaz
ay#az
nfgmﬂ SN2 o
+ Z E (S3.)" Sa.-
77041 77042

arFas

The non-Abelian S = 1 spin liquid state |¢g

> as well. In particular, we have

(4.4.17)

San)’ 2,

(4.4.18)

:1> is further annihilated by the

operators
1 X
o J— —s+m-+1
Ea=—5 D T Qm
Nm:O
N —qg—q- N 20—
Y e = S 2 ) =0 va.
g2y = 18) (M —11) £ (e = 115)
By#a B#«

(4.4.19)

which are obtained from the complex conjugate of (4.4.18) by Fourier transfor-
mation, as well as their complex conjugates Z,. These operators, however, do
not appear promising for the construction of a simple parent Hamiltonian for

the state.
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4.4.3 Direct verification

In this section, we wish to verify the defining condition (4.4.15) directly for the
S =1 ground state (4.1.4). The method will be similar to the proof of the singlet
property in Section 2.4.2. To begin with, we again notice that when we substitute
(4.1.4) with (4.1.2) into (4.1.6), we may replace the antisymmetrization A in
(4.1.2) by an overall normalization factor 9which we ignore), as it is taken care
by the commutativity of the bosonic operators S,. Let 1&0 be 5= without the
antisymmetrization in (4.1.2),

. 1 1 N N
e, = /3 P — 2 i (4.4.20
Yo(z1 ZN) {21 — 2 N1 — ZN} H(Zl zj) H zi- )
1<J =1
Since z/;o(zl, Z9,...,2N) is still symmetric under interchange of pairs, we may

assume that the spin flip operators (S;)* and S5 of (4.4.15) will act on the
pairs (21, 22) and (z3, 24), respectively:

(S)2S51we=) = Y. (S2)%(SH)?

{z5,--,2n}

{ Z ’(Z}O(navnavnﬁaz47257~~’7ZN)S§5;512;
z4(#ng)

+ > Po(MasTas 23,08, 255+ 2n) Sy SESY
z3(#ng)

+ &O(naanavnﬂanﬁvzfﬂ"'7ZN) S5 (SE)Q}

=4 Z {Zqﬂo(na,na,ng,zél,z;,,...,ZN)S'ZL}gjs...S;FN Ly,

{z5,....28} ~ %4
where we have used
Sy (SHm |, -1y, =n(SH" ', -1),,, (4.4.22)

which follows directly form the definition (4.1.5). We hence obtain
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N o~
Q§:1|¢§:1> = Z Z 1/’0(7Im77a7776a247- . '7ZN) 5v+ . S’:FN |_1>N7

24

{z4,...,2n} B=1 Mo = 11
B o
=0
(4.4.23)
since
/(/;0(77 s Nay 7, 7247"‘7ZN)
el = (11 = 18)n2715
Na — 1B
N N N
[0 =222 [[s —2) T (zi—2)
=4 1=5 4<i<j
1 1
Z5 — 26 ZN-1— 2N
vanishes for § = « and contains only powers né, 77[23, . ,néV*Z. Note that the

calculation for Q3=! is almost identical, since

1/10(7704777a77767247-~-»ZN) =y nﬁwo(na777a7775724»~-,ZN)
Mo — 11 : Mo — 11
vanishes also for 3 = a and contains only powers né, Ny ,név -1

4.5 Construction of a parent Hamiltonian

We will now construct a parent Hamiltonian for the non-Abelian S = 1 spin
liquid state (4.1.6) with (4.1.4) using the annihilation operator (4.4.15), i.e.,

N
Q5= [Y§=') =0 Va, where Q57'=)"

=1
B#a

1

m(s;fs;. (4.5.1)

The Hamiltonian has to be Hermitian, and we wish it to be invariant under
translations, time reversal (T), parity (P), and SU(2) spin rotations.

4.5.1 Translational, time reversal, and parity symmetry

The operator ngﬁﬂgzl is Hermitian and positive semi-definite, meaning that
all the eigenvalues are non-negative. A translationally invariant operator is given
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by
N
1 it o 1 1 1 2/ 42 _
Hy=5Y Q5757 =- %" ——— S3)7(S2)"S4s
2~ 2 5 na—nﬁna—m( ) (8555
@, 0,y
aF#B,y
= E Wapy S5 (S5 +1) S5 ST, (4.5.2)
o, B,y
aFt B,y

where wapy is defined in (3.6.3), and we have used that
2r0—\2 z z
(Sa)"(Sa)" =285 (e +1)

for S = 1, which is readily verified with (C.6). With the transformation prop-
erties under time reversal,

T: Do = OO =1, S — 0SSO =-S5,
and hence
Wagy = Warg, ST —-5S7, S~ — -8, S -97
the operator (4.5.2) transforms into

OHO = Y wapy S5 (S5 —1) S, SE. (4.5.3)
a,f3,
artBoy

We proceed with the T invariant operator
1 _
H = 5 (Ho +©Hy0) = Hy'~ + HY7, (4.5.4)
where

= 1 VA — Z —
Hy~ =5 > wapp (5a2{5+755 )+ S [55755})
oy
B

= 03 wass (527(57, 57} +25%5%) (4.5.5)
a#p

T VA —_

Hy? = Y wap, S22S5S; (4.5.6)
a,B,y
aBrFa

With the transformation properties under parity,
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P: g = nI=%, S —6S6=S, (4.5.7)

and hence wag, — Wayg, We obtain the P and T invariant operator
1 -
Hy" =5 (Hy +ILHG 1) = Hy™= + HY7, (4.5.8)
where

_ . 1
HY™= =Hy=, Hy'7" == Y wap,S22(S5S7 +5557).  (45.9)

2
a,B,y
a#BEYFQ

4.5.2 Spin rotation symmetry

Since the non-Abelian spin liquid state |1/J§ :1> is a spin singlet, the property that
it is annihilated by (4.5.8) with (4.5.9) and (4.5.5) implies that it is annihilated
by each tensor component of (4.5.8) individually.

With the tensor decompositions (D.2.4), (D.2.5), and 8% = 2 for § = 1, we
can rewrite the two contributions as

2 1 4 1 1 1
= S| (3 570) (3 Jy7b) + oo )
= 3 V6 3 V6 3 V6
(4.5.10)
2 1 2 1
H = Y wap, <+Tga> (sﬁsng,Y) (4.5.11)
a,B,y 3 V6 s V6
a7

Projecting out the scalar components under SU(2) spin rotations yields

_ 8 1 1
{HS™=}, = waps (9 ~ % {ToaThs}, + 3Sa55> ; (4.5.12)
a#B
4 1
(Y= S won (3905, §(T0T0),). (519
e

The next step is to calculate the scalar component of the tensor products in
(4.5.12).
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4.5.3 Evaluation of {TgaTg,Y}O

We evaluate the scalar component of the tensor product of Ty, and Tj with
a # B,7 using (3.5.20),

2
{T9.75,}, = (7,002,0;2,0) Y TiT;" (2,m;2,—mlj,0).  (4.5.14)

m=—2

With (D.2.3) and the Clebsch—Gordan coefficients

(2,m;2, —m|0,0) = (_\}%m, (4.5.15)

we obtain

2
5 {TaOaT[gv}o = Z (=)™ Tgy"

m=—2
=S8,S, 545+
+ (8555 +555%) (S5ST +5552)
1 7 QZ — — 7 Oz — —
+ 6(4SaSa — S48y — S.S8T) (48585 — 8587 — S5 87)
+(SES +S452) (858, + S557)
+ 55558557 (4.5.16)

We wish to write this in a more convenient form, which directly displays that
it transforms as a scalar under spin rotations. Since

1919191=3-006-106-203-304,

we can only form three scalars from four spin operators. For a # 8 # v # «,
three such scalars are

S2(S55,), (SaSs)(SaS,), and (S,8,)(S.5s).

For a # 8 = =, the latter two are identical, but we have the additional scalar
5,83. For a # 3,7 in general, we write

5 {019}y = 0 52(558,) + 0 [(8085)(SaSs) + (545,)(5a55)]
+cdpy SaSps, (4.5.17)

where we have used the invariance of the tensor product under interchange of
B and . The coefficients a and b may depend on whether 8 = = or not.
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Since the S, S, term in (4.5.16) has to come form the second term in (4.5.17),
we can immediately infer b = 2. To obtain a and ¢, we first write out the second
term in (4.5.17) for a # 3,7,

2 [(Sasﬂ)(sa‘sw) + (SaS’y)(SaSB)]
1 7 QZ — - Z QZ - -
= 5(2,9@5[3 + SJSB + 5, Sg) (2SQS,Y + S;FS,Y + 5, Sj)
+ same with § <~
= St885S, +5,5,55ST
+ 5555 (S;FS’W_ + S;S;r) + 5555 (S;rsg + S;SZ{)
+ (S;FS’/; + S;SZ{)SgS’ﬁ + (S;FSW_ + S;S;F)SESE
1 i _ 1 _ _
+ 55;{5'& (Sﬁ S;r + 55 Sg) + 55,1 St (SE,FS,Y + S,JYFSB )
+453,50,555%, (4.5.18)
and order the terms such that the Sg operators are to the left of the S, operators,
2[(8055)(SaS5) +(SaS,)(SaSs)]
= StStSy ST +5,5,55 5
+ SZS’Q‘SES; + SéS;SéS;F + SZSiSESﬁ + SéS;S;Sﬁ
A [Sg,Sfy] - SzS, [SE,SEY]
+ 55555552 + 8, 855452 + ST SLS55T + S, 56855t
—Strsz [Sg, Sf] -5, 5% [Sf;, Sﬂ
1 o _ 1 - _ _
+ 55;5’& (Sﬂ S,“; + S;SW ) + 550‘ SI(S;SW + Sﬁ S,T)
1 _ _
_ 5[5;,5*&} (53,57]
+450,50,5555- (4.5.19)
With
zZ — zZ zZ — zZ 1 — —
[Sa’S;] [SB ’Sﬂ} + [Swsa] [S;’Sﬂ} + 5[5;_75&] [S;’Sﬁ}
= S:{Sg + S;Sg + 28255 = 285.85,
we finally obtain

2 [(Sasﬁ)(sasv) + (SaSv)(SaSﬁ’)] + 2557 SozSB
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_ —g— 4 g-g-gt
= S;”525557 —|—SaSaSBSj
+ S(ZXSISES; + S(ZXS;SES;F + S(ZXSJSB_S,ZY + SZYS;SESﬁ
+ SJSZSESf/ + S;SZSES? + S:[SZKSES; + S;SZSES;F
1 _ _ e
+ 5 (5587 +5757) (585 +5557)
+4.55,5,,555%, (4.5.20)
Subtracting this from (4.5.16), we obtain
5 {TSQT§7}0 —2 [(Sasﬁ)(sas“f) + (SaS’Y)(SaSﬂ)} — 203y 5053
1 zZ Q7 — — 7z Q7 - —
= 6(450‘30‘ - SFs, —S; S;r) (ZLSﬁS,y — S;S,Y — SB S,'D
1 — — - - Z QZ QZ QZ
— §(ScfSa + S, S(f) (5557 + S5 S,j) —455,50,555%.
4
= —gsi(sﬁsv), (4.5.21)
or
4
5 {T()OéaT[g)’y}O = _gsi(sﬁs’y) +2 [(Sasﬁ)(sas’y) + (Sas’y)(sa‘s’ﬁ)]
+ 208, SaSp (4.5.22)
As an aside, since the Clebsch—Gordan coefficient
(2,0;2,0[1,0) =0, (4.5.23)

(4.5.14) implies that the tensor product of T2, and Tg7 has no vector compo-
nent, i.e.,

{13, 13,}, =0. (4.5.24)

This implies that we cannot obtain a vector annihilation operator which is even
under P and T from the operator Hy defined in (4.5.2).

4.5.4 Writing out the Hamiltonian
Substitution of (4.5.22) into (4.5.12) and (4.5.13) yields

1
S}y = 75 D wans [16 —2(85,85)" +4 SaSﬂ}, (4.5.25)
oy



4.5 Construction of a parent Hamiltonian 127

()= 1 Y s [8508, — (S250)(8.5,) — (85,)(5.5)]

a, B,y
aFBEyFo
(4.5.26)

With (B.20), we rewrite the first term in (4.5.26) a;

8 Z wag.YSgS,Y = 16Zwa555a35—4zsa55
a,B,y a#fB a3
a#B#vFEa

=16 Z WappSaSs — 4S§ot + 8N.
a#B

Collecting all the terms we obtain

LIS TEDS

a#B

1 1
— > |(5a85)(Sa8;) + (Sa5,)(SaSp)
By Noe = MB N — Ny

a#fErFo

2
P— 7775|2 205085 —2(SuSp)’]

AN(N? — 1)

74S§ot + 3

+ 8N, (4.5.27)

and finally

{H§’T}0 ;%Inl?ﬂ?{s aSp — 10(5 Sﬁ)}

_% 2 @ — ) [(SaSa)(SaSW)+(Sasy)(sasﬁ)}

(4.5.28)

Note that the second term in the first line of (4.5.28) is equal to what we would
get if we were to take 8 = v on the term in the second line.

In conclusion, we have derived that the non-Abelian S = 1 Pfaffian spin
liquid state ’w§:1> introduced in Section 2.4 is an exact eigenstate of

Z 5453 1 Z (SaSB)(SaSW)+(SaSV)(SaSﬂ)
o

In. —nsl2 20 i — 7 _
= gl 20 S (7l = 15) (N2 = 1)

aF#B,y
(4.5.29)

with energy eigenvalue
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2m2 N(N?+5) 27 <N+;>.

. T R (4.5.30)

The information regarding the positive semi-definiteness of HY' ™, which was still
intact on the level of (4.5.10) and (4.5.11), has unfortunately been lost as we
carried out the projection onto the scalar components (4.5.12) and (4.5.13). We
will recover this information in Section 5.5.1. Exact diagonalization studies [141]
carried out numerically for up to NV = 18 sites further show that |w§:1> is the
unique ground states of (4.5.29), and that the model is gapless.

4.6 Vector annihilation operators
4.6.1 Annihilation operators which transform even under T

We can use the defining condition (4.5.1) further to construct a vector annihi-
lation operator. First note that since

Q= Yg=!) =0 Va,

\¢§=1> is also annihilated by the Hermitian operator

1 s—1tns= 2 (qz -
H, = 595—1 Q57 = > wapy SL(SL+1)SEST, (4.6.1)
By
aF# B,y
which is just the operator (4.5.2) without the sum over «. Constructing an
operator which is even under T,

1
Hy =5 (Hao+©H,0) = Hy~ + H.7, (4.6.2)
with
1
T= z 2 — 7z Q7
HI= = 23 woss (S27(SF. 57} + 2527 (4.6.3)
B
BFa
Hy7 = )" wapy SL2SEST. (4.6.4)
B#Y
ByFa

and odd under P, we obtain

(HF —1HIT) = HE™= + HYT7, (4.6.5)
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where

DY % §72(S5 x S, ). (4.6.7)
BAy
ﬂ,"/?za

With (D.3.8) and (D.3.3) we find that the scalar component of the product of the
z-components of three vectors vanishes identically, while the vector component
is given by

5{S%%(S5 x 8,)"}, = S%(Sa(Ss x S)) + (Sa(Sp x 8,))S% +2(Ss x S,)*,

where we have used a # ,~ and SZ = 2. The Pfaffian spin liquid state ’w€:1>
is hence annihilated by the vector operator

: : ot 1

S{HETY, =1 Y TP [(Sﬁ X §5) + 55a(Sa(Ss x 8,)
ﬁf’@ Na — 7B
FEQ

1
+ 5(Sa(sﬁ x 8,))Sal.  (4.6.8)
With
Z S'y = Stot _Sa - S,37
v
Y#£a,B
SpxSg=1Sp,and (3.7.18), we find from (4.6.8) that ’w§:1> is also annihilated
by

(3 B (5, 85) =18+ 1 (Sa(Ss x Sw)Sa | (469
o —TIB
B#a

We can rewrite the product of the four spin operators in the last term as

N
(Sa(Sp x Siatr)) St = > e*°S2Sh [S2, S| + something - Sfp,  (4.6.10)
y=1

where the second term annihilates every singlet. The first term yields

e 5aSh S5, Sa] = e el SLSpSe
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= i(g%4% — §5°°6") 5255 e
=i52(8.S5) — 15452, (4.6.11)

where we have used a # . The Pfaffian spin liquid state (4.1.6) with (4.1.4) is
therefore also annihilated by

ol natnsl. 1
Di 1:227MZ|:1(SQXSB)+2SB_2SQ<SQSB) )
B#a

D7 Y§T) =0 Vau (4.6.12)

This is the analog of the auxiliary operator (2.2.42) or (3.7.8) of the Haldane—
Shastry model.
Equation (4.6.12) implies that ’1[)69:1> is further annihilated by

N
f— — 1 « . 1
AT =S St ooy Tt {l(sa x S5) — =Sa(SaSs)|, (4.6.13)
a=1 2 a#B Mo =11 2
where we have used (B.16). This is the analog of the rapidity operator (2.2.8)
or (3.7.9) of the Haldane-Shastry model. In contrast to the Haldane-Shastry

model, however, the operator (4.6.13) does not commute with the Hamiltonian
(4.5.29).

4.6.2 Annihilation operators which transform odd under T

Finally, we consider annihilation operators we can construct from (4.6.1), and
which transform odd under T,

_ 1 _ _
HI = 5 (Ho = ©H,0) = H'= 4+ g7 (4.6.14)

with
T= 1 Z — VA —
HI = 5 3 wonalSE715.85] + 52(85.57)
B#a
> wags (52285 + S5(S5 - 557)) (4.6.15)

B
B#o

HY* = )" wapy S2S587. (4.6.16)

BFY
By#Fo
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Let us first look at the component which transforms odd under P,

1 _ _ S —
HY™ = 5 (Hy — ILH 1) = ™= 4 HY', (4.6.17)
where
HPT=—0, HPT# = Z wagy SL(STST — S58). (4.6.18)
B#y
By#o

This operator has no vector component. With (D.3.10), we obtain the scalar
component

i i Sa(Ss xS
(DY == Y — (Spx 8,) (4.6.19)
(Mo = 718) (11 = 71)
BF#a
It is identical to (3.7.16) in the Haldane-Shastry model, and annihilates every

spin singlet. We will not consider it further.
We will now turn the component which transforms even under P,

1 — —
HPT = §(HT +IHIT) = HYT= 4 HYTZ, (4.6.20)
where
fo T re 1
HPT= = gT=  pgPT# = 5 D wapy SL(S5ST +S557), (4.6.21)
p#
Bﬁ?za

which has no scalar, but a vector component. With (D.3.8) and (D.3.3), we
write

(HI=}, = ZWW[ (SaSp) + Sal(5%)85 + S25%

B#a
+ 485782 — 8.(5%)8 s — (sasg)sg] (4.6.22)

Writing out the second term, we obtain
z 1o z g+ + gz o— z Qz Qz
Sa(85)8p = 5 (85 9655 + 519695 ) + SaSash,
= 5%(8a8p) + 1([S— si)s§ + [s4.52)85)
« « 2 a Mo ﬁ a'Ya B
= S4(8a8p) +i(Sa x Sp)". (4.6.23)

Similarly, the fifth term gives
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Sa(5%)85 = (SaS5)S5 +i(Sa x Sp)*. (4.6.24)

Collecting the terms, we obtain

T= 2 Z Z Z Z
{HI7}, = £ 2 waps 455 + 55 + S4(SaSs) — (SaSp)S3],  (46.25)
B
B#a
where we have used §2 = 5?3 = 2. With (D.3.9), we further obtain
T 1 Z Z Z
{HI*}, =2 Y wasy [4Sa(sgs,y) — 5%(SaSy) - Sv(sasﬁ)] (4.6.26)
BFy
By#o

Combining (4.6.25) and (4.6.26), we finally obtain the vector annihilation op-
erator

A5~ =5({H17), + (HI7))

) Z 48, + S+ SQ(SQS’5) — (Sa55)55
5 [0 =152

B#a
484(555) — 55(Sa55) — 5,(Sa5p)
> (Tl = 718) (e = 11y)

)

B#Y
Bv#a

ASTH ST =0 Ve (4.6.27)

This operator is rather complicated, but does simplify as we sum over a. From
(4.6.15), we obtain

N2

Z{H2:}1:2zsazwaﬁﬁ: 6_1Stot-
« «a B

B#a

This implies that |w§:1> is also annihilated by

Y5 =5 {HI7}, =

Z 454(555) — 55(8455) — §+(5a55)
(Tl = 1) (Ma — 1)

a,B,y
aFpFEVF

(4.6.28)
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Table 4.1 Annihilation operators for the S = 1 spin liquid ground state. With the
exception of the defining operator Q5=! and =, which are the m = 3 components of
3rd order tensors, we have only included scalar and vector annihilation operators.

Annihilation operators for |¢§=1)

Operator Equation Symmetry transformation properties
T P order of tensor transl. inv.

Siot (2.2.6) — + vector yes
QsS=1t (4.4.15) no no 3rd no
Ea (4.4.19) no no 3rd no
HS=! — E§=1  (4.5.29) + + scalar yes
Ds=t (4.6.12) + — vector no
AS=1 (4.6.13) + - vector yes
AS=1 (4.6.27) — + vector no
Y=t (4.6.28) — + vector yes

4.7 Concluding remarks

The various annihilation operators for the S = 1 model derived in this section
are summarized in Table 4.1.

The main result, of course, is the Hamiltonian H°=! given by (4.5.29). It is
a three-spin operator. The three-body interaction terms fall off as 1/(r12713),
which makes the model long-ranged. Since the wave function (2.4.1) introduced
in Section 2.4 is critical, i.e., has algebraically decaying correlations, it is not sur-
prising that we need a Hamiltonian with long-ranged interaction to single it out
as unique and exact ground states. Hamiltonians with only short-ranged interac-
tions, like the Heisenberg model, tend to single out states with exponentially de-
caying correlations, and a Haldane gap in the excitation spectrum [62, 64, 1, 30].

The most intriguing feature of the S = 1 Pfaffian spin liquid state we have
elevated into an exactly soluble model here is that the spinon excitations obey
a novel form of quantum statistics, which is presumably the closest analog to
non-Abelian statistics one can define in one dimensions. As explained in Section
2.4.5, there is an internal, topological Hilbert space of dimension 2™ associated
with a state with 2n spinons. In the thermodynamic limit, all the states in
this internal Hilbert space become degenerate. We assume that the information
regarding the internal state is encoded in fractional shifts in the momentum
spacings between the individual the spinons (see Section 2.4.5). These shifts are
topological quantum numbers, and are hence insensitive against local, external
perturbations. This makes this model, and presumably a range of models of
critical S = 1 spin chains, suited for applications as protected qubits in quantum
computing.
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Preliminary numerical work [141] indicates that the rapidity operator A given
in (4.6.13) does not commute with H*='. The model hence does not appear
to share the integrability structure of the spin % Haldane—Shastry model. We
conjecture that the reason for this is related to the rich internal structure of the
Hilbert space, which makes the universality class of the states we introduce here
both much less accessible and much more interesting than the Abelian S = %
Heisenberg model.

In the following chapter, we will employ the theoretical method developed
here to generalize the model to arbitrary spin, i.e., to identify a parent Hamil-

tonian for the state (2.4.37) introduced in Section 2.4.6.



Chapter 5
Generalization to arbitrary spin S

5.1 A critical spin liquid state with spin S
5.1.1 Generation through projection of Gutzwiller states

In this section, we wish to generalize the model introduced and derived in the
previous section for spin S = 1 to arbitrary spin S = s. The generalization of
the S = 1 ground state (2.4.3) with (2.4.1) was introduced in Section 2.4.6. In
essence, we combine 2s identical copies of the Gutzwiller or Haldane-Shastry
ground state with spin %, and project the spin on each site onto spin s,

i1vie.. . 0t=sa@s—1)-s—1a...
—_———
2s

The projection onto the completely symmetric representation can be carried
out conveniently using Schwinger bosons (see Section 2.4.3). In particular, if we
write the Haldane-Shastry ground state as

Wi = 3 U8 am) SE e SE )

{z1,22,...,2m }

_ HS + t o+ T
= E o0 (21,---,2m) ay, ...al by ...bl |0)
{z1, 25w, 0 }

= Ui[af, b1 10), (5.1.1)

where % (21, ..., zn) is given by (2.2.3), M = % and the wy’s are those lattice

sites which are not occupied by any of the z;’s, we can write the spin S state
obtained by the mentioned projection as (cf. 2.4.37)

) = (g [at.0) " [0). (5.1.2)

135
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In Section 2.4.6, we mentioned that the state can alternatively be written as
WeY = D ez, zen) S ST s) (5.1.3)
{21 ..... ZSN}

where N is the number of lattice sites,
|=8)y = @41 |5, —5), (5.1.4)

is the “vacuum” state in which all the spins are maximally polarized in the
negative 2-direction, and ST are re-normalized spin flip operators which satisfy

1
(29)!

(ahy" (b)) 2= [0) = (§7)" [s, —s). (5.1.5)
In a basis in which S” is diagonal, we may write

St = a’h =

= - gt 1
IR s—SZ—i-lS' (5.1.6)

Note that (5.1.5) implies

— &4\ n 5. —5) = ]‘a 1 CLT n(1pt)(2s—n)
ST(ST)" s, —s) = (23)1( )" (b") |0)
=n(SH)" s, —s). (5.1.7)

The wave function for the spin S state (5.1.2) are then given by

K sN
¢g(21,...,ZSN) = H H (ZZ‘—ZJ')Z HZ'L (518)

m=1 \ i,j=(m—-1)M+1
1<j

Note the similarity to Read—Rezayi states [119] in the quantized Hall effect.
For the purposes in Sections (5.1.2) and (5.2.2), it is convenient to write the
state in the form

2s

w5y =| S wS(a,..m) S5 55| s)y (5.1.9)

{21,...7ZM}

5.1.2 Direct verification of the singlet property

The singlet property of |1/15g > is manifest from the method we employed to con-
struct it by combining 2s copies of states which are singlets, and in particular
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through (5.1.2). It is nonetheless instructive to proof it directly from (5.1.9), as
the proof of the defining condition for the state in Section 5.2.2 will proceed
along similar lines.

Since the SZ,, component of (5.1.9) is trivially equal to zero, it is sufficient
to show that ‘¢69> is annihilated by Si... As we act with S on (5.1.9), we have
to distinguish between configurations with n = 0,1,2,...,2s re-normalized spin
flips S’(j at site a. Since the state is symmetric under interchange of the 2s copies
of 1§*®, we may assume that the n spin flips are present in the first n copies,
and account for the restriction through ordering by a combinatorial factor. This

yields

> 8 |45)

N 2s % n
Y s Y (2| X a0 sish 8,

a=1 n=0 {Z2~,~~,2M}

2s—n
{z1,--,2M }#Na
al ~ ~
=253 | > (s 2m) 85 S
a=1 |{z2,....,2m}
n—1
2 (25— 1 o i
' (’I’L— ) Z 7/’gs(na7227--~72M)Soij2-...~S:FM
n=1 {227~~,2M}
2s—n
S a8t 55| o
{21,020 } 00
a ~ ~
=2s Z ngs(na7Z2’...,ZM) S:;S;‘M
{z2,..., zym} a=1
=0
2s—1
S W ea) S5 SE | ey
{#z1,--s2m }
(5.1.10)
where we have used (5.1.7) and that ¢{®(na, 22, ..., 2ym) contains only powers

UE RN
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5.2 The defining condition for the spin S chain
5.2.1 Statement

The defining condition for the spin S state is by direct generalization of (3.4.6)
and (4.4.15) given by

l=> ,’1W<S;)235, Q5|68 =0 Va. (521
p=1 "¢

B#a

Since the state is real, it is also annihilated by the complex conjugate of 3,

_ 1 e -

0= (507 Q) =0 Ve (22
p=1 "¢
Ba

5.2.2 Direct verification

Unlike for the cases of spin % and spin one, we have not derived the defining

condition (5.2.1) from the parent Hamiltonian of a quantized Hall state. The
direct and explicit verification presented here does therefore not just serve to
check the validity of the previous analysis, but is an essential part of the entire
argument we present.

Let us consider the action of (53)255[; on [§) written in the form (5.1.9).
Since ¥§°(21,. .., zp) vanishes whenever two arguments z; coincide, one of the
z;’s in each of the 2s copies in (5.1.9) must equal 7,; since ¥§°(21,...,2p) is
symmetric under interchange of the z;’s and we count each distinct configuration
in the sums over {z1,...,2)} only once, we may take z; = 7,. Regarding the
action of S[; on (5.1.9), we have to distinguish between configurations with n =

0,1,2,...,2s re-normalized spin flips 5;{ at site (. Since the state is symmetric
under interchange of the 2s copies, we may assume that the n spin flips are
present in the first n copies, and account for the restriction through ordering
by a combinatorial factor. This yields
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(S2)*S5 |v§)

2s "
) o N
~50255 2 (2)| X s ) S5 S,
n=0 {z3,--,2m}
2s—n
> (a2, ) SESE - ST =) N
{z2,....20m }#N8
:(25)'28 Z wgs(n(x7nﬂ7z3a-~-azl\/f)§:;'~ SjM
{z2,.-s2m }
> (25— 1 "
. <n_1> Z ¢gs(77a7776»237~~>2M)SES;;'~~'SZV,
n=1 {z3,...2m}
2s—n
Z 7/1515(77a7227-~72M)§;2 52_M ‘_S>N
{z2,....,2m } #np
= (25)!2s Z wgs(na,nﬁ,z&...,zM)S;;....-SQLM
| {732 }
r 2s5—1
> U (e a2y zm) S ST |—s)y, (5.2.3)
L {z2,--.2m}
where we have used (5.1.7). This implies
QS W’O> (25)!2s Z Z V0" (Mas 185 235 - - - 2M) 5”;; SJM
{2z3,...,z2m } B=1 Mo =115
=0
2s—1
Z wo (Nes 224+ -y 2a0) S .- ST |—s)y, (5.2.4)
where we have used that
M
1/JHS(77aa77 )23y ZM)
0 ; o ™ — 1) noﬂmH o —2)2 (s —2)%z ] (2 —2)°

3<i<y
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vanishes for f = « and contains only powers 77}3, 7]%, e ,néV_Q. Note that the
calculation for Q2 is almost identical, since

z/}gs(na777ﬂ723’-..21\/[) = nﬁ'l/]gs(’r]a7nﬂ,237...ZM)
o = 103 * M = 13
vanishes also for # = a and contains only powers 73,73, ... ,név -1

5.3 Construction of a parent Hamiltonian
5.3.1 Translational symmetry

A Hermitian and translationally invariant operator which annihilates ‘w@g > is
given by

N
1 T 1 1 1 ) .
Hy=— QSQS:7 b e 2s 25 ot
0 ;::1 R azﬁ;w”a—%na—m(sa) (Sa)™5555
a# B,y
(5.3.1)

where ag is a parameter we will conveniently choose below. We wish the Hamil-
tonian to be further invariant under P, T , and spin rotations. From (D.2.6),
the tensor content of SES; is

1

_ 2 . .
SiSy = 358, —i(Sp x )" - 7

T, (5.3.2)
where

1
0 Z QZ - —
Th, = 75 (45385 - 8§85 = 5557)

1

V6

This implies that we only have to know the scalar, vector and 2nd order tensor
components of (S7)2%(S)?* in order to obtain the scalar component of Hy.

(65357 —28385,). (5.3.3)

5.3.2 Tensor decomposition of (S1)25(§7)32¢

Since (S1)2*(S7)?° contains only a single spin operator S with Casimir §% =
s(s+ 1), its scalar component U must be a constant, its vector proportional to
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VO =g” (5.3.4)

(cf. (D.1.1)), its 2nd order tensor component proportional to

1 2
o_ - zqz _ g+qg— _ g—qt) — £ z2
T° = \/6(45 S — §tS — 5 S+) 7 [35 s(s+1)} (5.3.5)
(cf. (D.2.3)), and its 3rd order tensor component proportional to
1
Wo=—— (8 5"9%+ St5“S~ + 528~ 5+
\/5(
+ St578% + 87575 + 578T57) + iSZSZSZ,
Vb
:l[sﬂ—ss(sﬂ)ﬂ}sz (5.3.6)
7 3.

(cf. (D.3.7)). Our task in this section is to calculate the constants of propor-
tionality in the expansion

(SH)2(S7)% = ag {1 +aVO+bT + CWO}
+ tensors of order > 3. (5.3.7)

To begin with, note that (S7)2* and (S~)2¢ are up to a sign equal to the
tensor components with m = +2s of one and the same tensor of order 2s,

T(25)28 _ (_1)25 (S+)257
(5.3.8)
T(2$)723 _ (S—)Qs.
Recalling (3.5.17), we write
(22 P29~ _ N )
T T = " TW"(j,0]2s,2s; 25, ~2s), (5.3.9)
j=1
where 70" is with (3.5.13) given by
0 2s _
7O = Y 7T eI (95 mi 2, —mlj,0) . (5.3.10)
m=—2s
With (3.5.9), we can calculate the components 7% from T(zs)iQS,
T(s)mE ! [Si,T@s)m] (5.3.11)

V2828 +1) —m(m £ 1)
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Specifically, UACDRREN given in terms of T(25)%° by

(2s)23*” . n 1
T B <1:[ V2s(2s+ 1) — (28—i+1)(28—i)> (5.3.12)

i=1

: {S*, [S*, . [S*,T@S)QS] H . (5.3.13)

n operators S~

To evaluate the first term, we use

I1 (s(s+ 1) — (s—i+1)(s— i)) =[J@s—i+vi= ((2288)'7:;" (5.3.14)

i=1 i=1

which holds for 1 < n < 2s, 2s and n integer. This yields

e = N Z( Y E T (s (535)
Similarly, we find
T THE 43377;; Z( ) bR T ($H)E (5.3.16)

Note that (5.3.15) and (5.3.16) hold for 0 < n < 4s. With (5.3.8) and the
shorthand |m) = |s, m), we can write

(S—)k T(2s)2S (S—)n—k

=(=1)* |s—k)(—s+n— k|
(s — k| (S7)*]s) (s (SF)? |=5) (=8| (ST)* " |[=s +n — k),

and similarly

(§+)n* T(zs)—QS (SH)*
= (=1)* |-s+n—k) (s — k|
(—s 40— k[ (ST)" T =) (=s[ (ST)*|s) (s| (ST)* s — k) .

25—
)é n

This implies that in the product 7(3* T(2s)_2$+n7 only terms with matching
values of k in the sums (5.3.15) and (5.3.16) contribute. With (5.3.14) we obtain
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(2s)!- k!
<S|(S+)k(s—)k|8>: m for 0 < k < 2s,
0 otherwise,
(25)!- (n — k)!
<—S‘(S‘)k—n(5«+)n—k|_8> _ (25——n—|—k)' for 0 <n—k < 2s,
0 otherwise,
(s (ST)2(57) |s) = (29)!". (5.3.17)

This yields

T(2s) 25—n T(2s) —2s5+n

= (28)1% (—1)>F"
min(n,2s)

(45 —n)! n\ (n) (2s)!- k! (25)!- (n — K)!
@, 2 <k)<k)(2s—k>! @s—nthyr RN

k=max(n—2s,0)

min(n,2s)

— (25)17 (—1) " <‘;8>1 3 (2;) <n2_sk> s — ) (s — &

k=max(n—2s,0)

(5.3.18)
Substitution into (5.3.10) yields
0 & 25— —2s+
TOT =N eI )T (95 95 — 025,25 +nfj,0).  (5.3.19)
n=0
— 25—n
= Cj
With
min(n,2s) 2s 2s+k
n=0 k=max(n—2s,0) k=0 n=k
we obtain

2s 2s
0 2s 2s+k k n—Fk
70" = 2N ST oz () AL T s — k) (s — k|

4s
k=0 n==k
n
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45)
k=0 | p=0
</€+p

(5.3.20)
The individual tensors in the decomposition
4s
(S+)23(S—)2s :Z{(S+)2S(S_)2s}, (5.3.21)
j=1 I

are hence with (5.3.8), (5.3.9), and the definition of C?“" in (5.3.19) given by

(150 ), - oz
2 2
- 2(32!1 kzzopf s — k) (s — k|, (5.3.22)
where we have defined
, (28) (23)
PF=(2s+1)C}" i: cj?s—’“—p(—mkﬂ’kip. (5.3.23)

(+0)

k+p

We are not aware of any method to evaluate this sum analytically. We have
used Mathematica to evaluate it for K = 0 and j = 0,1,2,3 as a function of s,

and then obtained the coefficients in the expansion (5.3.7) from these terms.
With the Clebsch-Gordan coefficients

Cm B ( 1)25—771
0o — \/m )
m_ V31D em
T V/2s@2s+ D(ds 1 1)
VB (—=1)27™ - (3m? — 25(2s + 1))
V25(25 + 1) (4s — 1)(4s + 1)(4s + 3)
B VT (=1)%~m . m (5m? + 1 — 65(2s + 1))
C2s(s+ 1)(25s — 1)(2s + 1)(ds — 1) (4s + 1)(4s + 3)

V)

2 =

we find
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Py =1,
Py -
s+1

o 5s(2s — 1)
27 (s+1)(25+3)
0 7s(2s —1)(s — 1)

B = s+ 36+ (5:3.24)

Comparing (5.3.22) with (5.3.24) to the coefficients of |s) (s| we obtain from
(5.3.4), (5.3.5), and (5.3.6),

VO=sls) (s| +...,

s(2s—=1)s) (s|+ ...,

s(2s—=1)(s=1)[s) (s| + ..., (5.3.25)

Sl gl

we obtain

0= e

3
a = i

+1
V6 5

2 (s+1)(25s+3)’
2

VA

(=)

V5 7
T D25 +3)(5+2) (5-3.26)

ot

for the coefficients in the expansion (5.3.7).

5.3.3 Time reversal and parity symmetry

The for the scalar and vector component relevant part of the operator Hy in-
troduced (5.3.1) is with (3.6.3) and (5.3.7) given by

1

Hy=2 Mw7{1+av§+b7§a+cw@M}Sgs;. (5.3.27)
a3,
astBoy

From now on, we omit the prime. With the transformation properties under
time reversal,
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T: Ne = ONe® =17, S — 656=-5,
and hence
Wafy = Wang, ST — =57, S — -8t §"— 97
VO v 1071 w5 —wO,
the operator (5.3.27) transforms into

1 0 0 0 —Q+
OHO = 5 Y wapn {1 —aV? 4+ b7 — CWMQ}S7 S, (5.3.28)

By
a# B,y

We proceed with the T invariant operator

HT = % (Ho + ©H,0) = HI= + H} 7, (5.3.29)
where
_ 1 1 _ 1 _
Hy~ =3 > wapp [(1 +bT§a)§{S[Jir’Sﬁ f+(aVy +CW3aa)2[S;>Sﬁﬂ
oy
1 2s(s+1) 1,0
:=§:www(1+bf%)(—7m>
2 a#p 3 \/6

+ (aS%+c Wgaa)sg] (5.3.30)

1
H()T7é:§ > wapy (L+0T2,) SES;.

a,B,y
a£B#yta
-1 > (1+672,) (2858, —i(Ss x ) — =T
9 e Wa By aa 3 Ry — U8 ol \/6 By |
atfErta
(5.3.31)
With the transformation properties under parity,
P: ng = =7, S — 6S60=S5, (5.3.32)
and hence wagy —+ Wavyg, We obtain the P and T invariant operator
1 —
HET = 5 (H + ILHTI) = D=4 qET (5.3.33)
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where
Hg)T_ = Hg=7 (5.3.34)
1 2 1
PT+# 70 g 70
HO = 5 g Wa By (1 +b (xa) <3 BS’Y \/6 /3’)’) . (5335)

o, B,y
a#PFEYF

5.3.4 Spin rotation symmetry

Since the critical spin liquid state |1/J§> introduced in Sections 2.4.6 and 5.1.1
is a spin singlet, the property that it is annihilated by (5.3.33) with (5.3.34)
and (5.3.35) implies that it is annihilated by each tensor component of (5.3.33)
individually.

Since we wish to construct a Hamiltonian which is invariant under SU(2)
spin rotations, we proceed by projecting out the scalar component. This yields

_ 1 2s(s+1 b a
{H(l;Tf}O = Z Wapp [(3) -7 {TgaTgﬁ}o + BSQSB} ,  (5.3.36)

a#B
{(Hy™) -1 doow 25,5 —i{T0 739.} (5.3.37)
0 0 2 afy 3 By \/6 aatBySo] - I
a,p,
atBata

With (4.5.22), or specifically
5{T9. T8}, = —%ﬁ(s +1)* +4(8,85)* + 25,55, a#p,

and (5.3.26), we obtain

_ qpopoy 2004 SaSs+ 2ASaS,)’
V6 et PS03 (25 1 3) (s+1)(2s+3)

a SaS,B
3558 = Ty

and hence

_ 1 S.55)?
{H(E)T_}() = Zw(wﬁi?s—i—?) [8(8+1)2+Sa55— ((S-i-i; . (5.3.38)
aFp
Similarly, we use
4s(s+1)

5 {TgaT§7}0 = _TS,@S’Y +2 [(Sasﬂ)(SaS’Y)+(Sa‘S’7)(SaSﬂ)]7
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a#BEV+a,
to obtain
b g0 gy _ 25558 | (5055)(808:) 4 (SuS,)(SuS)
V6 et Brlo T 325 4+ 3) (s +1)(2s + 3)
and hence
{177,
_ 1 (SaS5)(SaS,) + (SaS,)(SaSs)
= a;’y wa5728+3 |:(5+1)Sgsfy 2(S+ 1) .
at By
(5.3.39)
With (B.20), we rewrite the first sum in (5.3.39) as
1 s(s+1
Z wag,ySgS,y =2 Z wWappSaSs — 5530,6 + ( 3 ) N.
a,B,y aFf
a# A7yt
Collecting all the terms we obtain
S.53)?
HPT — o SQS _ ( a8
0™y ;ﬁ“’ ﬁﬁ[ T s+ 1)(2s+3)
(Sa85)(8aS,) + (Sa5,)(SaSs)
" g e 2(s+ D25 +3)
a#B#rF
s+1 o  s(s+1)2 N(N2+5)
— . 3.4
2(25+3)7 % 2543 12 (5:3.40)

Note that the second term in the first line of (5.3.40) is equal to what we would
get if we were to take 5 =« on the term in the second line.

The spin S spin liquid state ’1/}(?> introduced in Sections (2.4.6) and (5.1.1)
is hence an exact eigenstate of

1 (Sasﬁ)(SaS'y) + (Sas'y)(sa‘sﬂ)
(ﬁa - 775)(7704 - 777)
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Sao Sﬁ _ 1 (5a55)(5455)
azﬁ o 2 o o e
aFByy

(5.3.41)
where R denotes the real part. The energy eigenvalue is given by

2n% 5(s + 1)° N(N2+5)__7T25(5+1)2< 5), (5.3.42)

- N2
N2 25+3 12 6 2s+3 +N

Ey =-—

This is the main result of this work. We will show in Section 5.5.1 that |15 )
is also a ground state of (5.3.40), i.e., that all the eigenvalues of H® — ES are
non-negative. Exact diagonalization studies [141] carried out numerically for up
to N = 16 sites for the S = 1 model and for up to N = 10 sites for the S = 5

_3
model further show that ‘1,&521) and ’wos _2> are the unique ground states of
(5.3.41), and that the models are gapless. We assume this property to hold for
general spin S.

5.4 Vector annihilation operators
5.4.1 Annihilation operators which transform even under T

We can use the defining condition (5.2.1) further to construct a vector annihi-
lation operator. First note that since

Q3 |Y5) =0 Va,

‘1/15 > is also annihilated by the Hermitian operator

Hy=—051 Z wasy (ST)**(S3)* 85 S5, (5.4.1)
a#ﬁ v
and therefore also by the scalar and the vector components of

1
Hy = o 3 oy {14V + 0T + Wi 1S5 S5, (5.4.2)

2
By
aF#B,y

which is just the operator (5.3.27) without the sum over . From now on, we
omit the prime. Constructing an operator which is even under T,
HT

[e3

1
=5 (Ho + OHZ0) = Hy~ + H;7, (5.4.3)
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where
_ 1 2s(s+1) 1
T= _ 0 0
B
+ (aS%+ CWSM)SE] , (5.4.4)
T# 1 0 2 . z 1 0
HY7 == " wapy (140TY,) (5855, —i(Ss x 8,)" — —=T§, ), (5.4.5)
2 BF#y 3 V6
BFo
and odd under P, we obtain
_ 1 — —
HET = 5 (HY -THIN) = HE™= + HY™7, (5.4.6)
where
HET= —0, HETA— 1 1+bT0,)(Ss x S,)" 5.4.7
«a - « - 22(“}@57(—’_ aa)(ﬁx ’Y)' ()
BF#y
By#a
With (3.7.6), we obtain
HET =2 ST BT (70 ) (S % S,) (5.4.8)
4 Ay T B
B#a

While the scalar component of (5.4.8) vanishes, the vector component does not.
With (5.3.5) and (5.3.26), we write

1+bT0, =1+ 35’22—5(8—&-1)}

5
(s+1)(2s+3)

7 15572 3(s —1)
T (s+1)(25+3)  2s+3° (54.9)

With (D.3.8) and (D.3.3) we find for the vector component of the product of
the z-components

5{S%%(Sp x 8,)"},
= 52(8a(Ss x 8,)) + (8a(Ss x 8,)) S + s(s +1)(Ss x S,)”.

Substitution into (5.4.8) yields
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PT k T+ iy L
=15 3 [ xS+ g Sa(8a(8 % 5)
Biy#a 1

+ 5T l(Sa(S,B X S’y))Sa

(5.4.10)
With
Z S'y = Siot — Sa — 557
vy
y#o,B
S xSz =1iS3,and (3.7.18), we find from (5.4.10) that |5 ) is also annihilated
by

Z Na +1s [(s x Sp) —iSs+ ——(Sa(Ss X Siot))Sal|.  (5.4.11)

—ng s+1

ﬁ?ﬁa

With (4.6.10) and (4.6.11), we rewrite the product of the four spin operators in
the last term as

(8a(Ss % Stot))Sa =184 (SaSs) — 15285
+ term which annihilates every spin singlet,
(5.4.12)

which holds for a # 3. The spin liquid state (5.1.2) is therefore also annihilated
by

S _ 1 Mo +775 . . 1
D = 227_7”3 i(So x §5) + (s +1) 85— —75a(SaSp) |
Bt
DI [¥§)y=0 Va. (5.4.13)

This is the generalization of the auxiliary operator (3.7.8) of the Haldane—
Shastry model.

Equation (5.4.13) implies that the spin liquid state |¢§) is further annihilated
by

N
AS = e 75 { xSy - 8.(S.85) |, (5.4.14
; QZ#%_W 8) = o7 Sa(SaSs) |, (5:414)

where we have used (B.16). This is the analog of the rapidity operator (2.2.8)
or (3.7.9) of the Haldane-Shastry model. In contrast to the Haldane-Shastry
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model, however, the operator (5.4.14) does not commute with the Hamiltonian
(5.3.41). The model is hence not likely to share the integrability structure of the
Haldane—Shastry model. It is possible, however, that the model is integrabel in
the thermodynamic limit N — oo.

5.4.2 Annihilation operators which transform odd under T

Finally, we consider annihilation operators we can construct from (5.4.2), and
which transform odd under T,

_ 1 _ _
HI = 3 (Hy — ©H,0) = H'= + H#, (5.4.15)

1 1 1
e [(aVS + e Weaa) 515555 1 + (1 +bT3a)2[S§’Sa]]
B

BFo
1 o (2D 1,
S Z Wapps [(a SL+cWiaa) ( — —Tgp
2 g 3 V6
Ba
+ (14 nga)S;] . (5.4.16)
T# 1 z 0 2 : z 1 0
Ha :5 Wa By (aSa—I—CWaaa) gS,@S»Y—l(SgXS,Y) _%TB’Y .
B#Y
By#o
(5.4.17)
Let us first look at the component which transforms odd under P,
_ 1 _ _ Sa _
HPT = 5 (HY —THIN) = HY™= + HYT7, (5.4.18)

HET= =0, HE =103 was (055 W) (S5 x S,)7 (5.4.19)

This operator has no vector component. With (D.2.5) and (5.3.26), we obtain
the scalar component
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T, _ _ i Sa(Sp % 85)
{Ha }0 o 2(3 + 1) [;7 (e — ﬁﬁ)(na - 777)' (5.4'20)
Biv#a

This is is identical to (3.7.16) in the Haldane—Shastry model, and annihilates
every spin singlet by the line of reasoning pursued in (3.7.17). We will not
consider it further.

We will now turn the component which transforms even under P,

= _(HY + nHI ) = HYT= + HET7, (5.4.21)

l\')\»—l

[

HET= = HT=, (5.4.22)

= 1 2 1
P E Z
HQT# — 5 waﬁ'y (aS + CWc(y)aa) (SSIBS’Y — % Tg’y) . (5423)
BF#y
By#Fa

which has no scalar, but a vector component. The vector components of (5.4.22)
and (5.4.23) are given by

(M), = 5 3 w5 {52575 + 575 5 (Whua ),
ﬁ#
+{(1+bT£a)Sé}1]’

(5.4.24)

_ 1 . - ¢

(HPT#Y = Z waﬂv[ {S%(S55, +S; Si)}l—\/é{WaoaaTgw}J’
By
By#a

(5.4.25)

where we have rewitten the first term in the way we originally obtained it. For
S = 3 or S =1, these expressions simplify significantly as W2, = 0, which

follows directly from W32, = (SJF)3 =0 for S < 2. For general S = s,
however, we have to evaluate { 0 e Tgv}r

5.4.3 Evaluation of { oo 57}1

We evaluate the vector component of the tensor product of W2

o and T35 with
a # B, using (3.5.20),
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2
(W05}, = (1,003,0;2,0) > Wi, Tp™ (3,m;2,-m|1,0). (5.4.26)

m=—2

From either (D.3.6) or directly from (3.5.9), we obtain

Wti)aa = _S$S;S:7

Wiea = 72 [S2.Wea] = VBSISE(SE+1),

wr ol (S5 Wiia] = —\/§S+[5SZ(SZ +1) —s(s—|—1)—|—2}
[e%e %07 10 « [e%e707 5 « « « )

Woao = 5= [S2- Whaa] = —= [5522 —8s(s 4 ) +1] 5% (5.420)
oo \/ﬁ « oo \/5 (o3 (073

Wide = = [S2. W] = /2 82 [582(5% —1) — s(s +1) +2]
oo \/ﬁ « [e%e707 5 « « (o3 )

Wol, = & (S5 Wada] = V65,5, (54— 1),

Wod, = - [$5, W2 = 575785,

[e7e70% \/6
With (D.2.3) and the Clebsch—Gordan coefficients

V5 for m = 42,

1
3,m;2,—m|l1,0) = —— ¢ —2/2 f =41 5.4.28
< | > m \[ or m y ( )
3 for m =0,
we obtain
7'5 5 0 0
3\/;{WaaaT6'y}1
= 5S§SZS;FS§S;

+ [5(S1828% + 82.5281) — (255 + 1) + 1)S| (555, + 5752
+ [55;2 —3s(s+1) + 1] s? [45;5: —5t8; - s[;sﬂ
+ [5(5;5353 +578287) — (2s5(s+1) + 1)5;] (545+ + 5457)

+58, 5.5, 555 (5.4.29)

[ene 2nge?
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We wish to write this in a more convenient form, which directly displays that
it transforms as a vector under spin rotations.
Let us consider first the case 3 # 7, and try an Ansatz of the form?

2a [(SOJSB)SZ(S(XS’)') + (SaS’y)SZ(SaSB)]
+2b[S5(S0S4) + (SaS5)S%] +2¢5%(85S,). (5.4.30)

Comparing the coefficients of the (five-spin) terms containing Sg S5 and S[; Sj
yields ¢ = 5. Comparing the coefficients of the three-spin terms containing
S48, S5 8%, 83ST, and S7S7 yields b = —2s(s + 1) — 1. If compare the
coefficients of both the three-spin and the five-spin terms containing SZ{S; and

Sy ST terms,

—(55%% —3s(s+ 1) +1)5% g(shgz Sy + Sy 5%58) + ¢S,

o TaTa oo

D (SEST(Sh 1)+ ST SE(SE 1) + S

(@38

=5 ((@2s(s+1) - 25%%) 8% — 28%) + ¢S~
= —58%% + (5s(s + 1) — 5)S% + ¢SZ,

we obtain ¢ = —2s(s + 1) + 4. With these choices, the coefficients of both the
three-spin and the five-spin terms containing S35% agree as well,

(208%% —12s(s + 1) +4)S% = 4a S%5%S% + (4b + 2¢)SZ.

Finally, the coefficients of the five-spin terms containing S35, S5 5%

z O+
v Sﬁsv ’
and SZ{S?W in (5.4.30),

a[sgsgsg (SHS5 + 85F) + 545254(55S5 + 54 5%)
+ (SES5 + S5 5T) 5555, + (SEST + s;sj)s;s;sg},

agree with those in (5.4.29).

For the equivalence to hold for the case 8 = v as well, we need to order the
spin operators in all terms in (5.4.30) such that the Sg’s are to the left of the
S.’s, as this is the order of the spin operators in (5.4.29). We hence have to
replace the second term in the first bracket in (5.4.30) by

Sa(S%(SaSs)) S, = S.,548,558:,

or equivalently add a term

I Note that there is no relation between these coefficients and those introduced in (5.3.7)
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S0 (S4(SaS4) S, — (SuS,)SL(SaSs)
= 5,587,571 [5%,5.]

= —03y1c7% S, 5251 S
= —0p, (1675781, 57,55 + 1% (S0, 5% 57.55)

= —04y(S21(Sa x Sa)S5 — eFe™ S 57 SE)
= =03y (— S4(8aSp) — (6776 — 6716%%) 5L, 57.5F)
= 0p,(5%(SaSp) + (SaSp)S — s(s +1)53). (5.4.31)

Taking all the terms together, we finally obtain

;:?,\/E{WgaaTgw}l =5[(5455)56(8a8,) + (8a8,)54(SaSs)]
— (2s(s + 1) +1) [S5(SaSy) + (SaS5)57]
— (2s(s + 1) — 4) 5%(S5S,)
+505,[S0(8aS5) + (SaSp)Se — s(s +1)S3].
(5.4.32)

5.4.4 Annihilation operators which transform odd under T
(continued)

Substitution of (5.4.32) into (5.4.24) yields with (5.3.26), (D.3.9), (5.4.9) and
(D.3.8)

3 ” _ _

o 1
(HET=Y, = 23 s
B

B#a
7

5 o o
B 2(8 + 1)(28 =+ 3)(3 + 2) \/; {Waa(y T,Bﬁ}l

15 ey B(s—1),
+ (s+1)(23+3){5a Sih 25 +3 Sﬁ]

4 1 1

3
=5+ T 25: Wapp
pa
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1 Z
S ETIGTD [10(SQSB)SQ(SQS/3)

— (2s(s + 1)+ 1) [S3(SaSs) + (SaSs)SE]
— (2s(s+1)—4)s(s+1)5%

+5[5%(SaS5) + (Sa55)5% — s(s + 1)

1 Z zZ Z 82_1 Z
5T [Sa(sasﬁ)ﬂsasﬁ)sa +s(s+1)sﬁ} - 53
—*Z —i(SS)SZ(SS)
T 225+ 3)(5+2) 5 WabB| = g1 WaPB)PalPaSs
B#a
— [Sé(SaSﬁ)-l—(SaS,@)Sé]
+2s(s+1)(s+2) S(ZX+2(5+1)SIZ3]
S — — Ll (8.84)5%(8.85)
= 1361 ﬁwaﬁﬂ 51 SaS8)5 (555

o
+ S4(SaSp) — (Sa55)5

+s(s+1)(s+2)5% 4+ (s+1) Sg] . (5.4.33)

Similarly, substitution of (5.4.32) into (5.4.25) yields with (5.3.26) and (D.3.9)

; 1 3 et o
(=LY s, [2(s+1) (52(5557 +5780)},
By
By#a

7 5
T o5+ 1)(25+3)(s +2) \/; {Waoa Tg’y}l]

4 1 1 .
SS5(S55,) = £ S5(SaSs) - £ (8aSp)S

3
TRaD 2 G
By#a
1
5(25 +3)(s - 2) B

= (25(s+ 1) + 1) [S5(SaS,) + (SaS5)S2]

5085)85(8a85) + (5a5,)5:(SaSs)]

— (25(s+1) — 4) S4(S55,)]
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_ 3 3w [ (8455)594(SaS,) + (5454)54(5a55)
T 2(25+3)(s +2) b7

B#Y s+1
Bv#a
+2(s +2) S%(S58,)
— SE(SQSA,) — (SQSB)Sﬁ . (5.4.34)

Combining (5.4.33) and (5.4.34), we finally obtain the vector annihilation op-
erator

s _ 2(25+3)(s +2) PT= PT
a3 = 2BV ey ey
_ 2
BF#a
= (7o = 171) (2 = 1) s+1
B#a
+2(s +2) Su(855,) — S5(5a5,) — (Sa85)S, |,

AL Y5y =0 Va. (5.4.35)

This operator is even more complicated than the corresponding operator (4.6.27)
for S = 1, and only simplifies moderately if we summ over a. From (5.4.33), we
obtain

2(2s+3)(s + 2)

PT=
3 za: {Hoé }1
2 Z 3
RS éwaﬁa (5a55)52(5055) + 2s + P L 5o %j waps
Ba
2 ] SN2 —1
-—— gjﬁwaw (Su83)S2(8aS5) + (5 1* *— Suor.
This implies that |1/)§> is also annihilated by
5o L3 (5085)Sa(SuS:) + (SuS)Sa(8a8
s+1 & (Mo = 718) (11 = 71
B#a

2(s +2) Sa(SBS'y) - Sﬂ(S@S’Y) - (SaS,B)S“/
> (e — 151 — 1) |

(5.4.36)

o, B,y
aFPFEVFa
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Table 5.1 Annihilation operators for the general spin liquid ground state. With the
exception of the defining operator Q2 , which is the m = 2s + 1 component of a tensor

of order 2s + 1, we have only included scalar and vector annihilation operators.

Annihilation operators for |1,Z)OS>

Operator Equation Symmetry transformation properties
T P order of tensor transl. inv.

Stot (2.2.6) — + vector yes
Q3 (5.2.1) no no 25+ 1 no
HS — E§ (5.3.41) + + scalar yes
D3 (5.4.13) + — vector no
AS (5.4.14) + — vector yes
AS (5.4.35) - + vector no
s (5.4.36) — + vector yes

Whether this operator is of any practical use for further study of the model,
however, remains an open question. The derivation of it concludes our study of
non-trivial scalar and vector operators we can obtain from the defining condition
(5.2.1) for the critical spin liquid state (5.1.3). These operators are summarized
in Table 5.1.

5.5 Scalar operators constructed from vectors

We see from Table 5.1 that there are two simple ways of constructing trans-
lationally, parity, and time reversal invariant scalar operators which annihilate
‘wﬁg > from vector operators. These operators are

S DS'DS and Y S.AS. (5.5.1)

[e%

These could potentially lead to alternative parent Hamiltonians for ‘wﬁg > If we
just recover (5.3.41), the evaluation of the first operator will show that H* — Ey
is positive semi-definite, or in other words, that |1/)§ > is a ground state of H¥.

5.5.1 Factorization of the Hamiltonian

In this section, we will evaluate
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DS'TpS
[e3 (a2
«
with Di given by (5.4.13), or explicitly

st 1 Ne + 135 . 1
D3' = 5 ZB: — {l(sa x Sg)—(s+1)Sp + H1(56“95)54,

U
BFa
1 + 1
s_ 1y tatm] ~
D, = 5 ; — [1(Sa x8,)+(s+1)8, 3+1Sa(5a5v)}
Qiat

With a # 3,7 and
i(So x Sp)i(Sa x 8,) = cihelm gl ghgl om
= 15" (S35,58SY" — S [S4. 58] 8') — 876N S} S8 ST
= (5455)(845,) —i84(Ss x S,) — s(s +1)S43S., (5.5.2)
we obtain for the product of the two square brackets
(8a83)(SaSy) —18a(8p x Sy) — s(s +1)S5S,

. 2
+2(s +1)iSa (S5 x 55) = 7 (5a55) (SaS5)

—(s+ 1)2 SpSy + 2(SQSB) (Sasv) - H%(Sasﬁ) (SGS"/)

— (25 + 1){ 5055)(5aS,) +iSa(Ss x 8,) — (s + 1)5557]. (5.5.3)

s+1 (
The product of the prefactors is given by

R
Na =N Na — Ty

1 2 e 1 e 2
[1+WH1+77]+{1+ ! H1+ I }
2 Mo — N3 No = Ty 2 Na — N3 Na — Ty

NaTlp 92 Naly
(N —=18) N = 1) (Mo — 1p) (10 — 1)

=1 — 2(Wapy + Wars)- (5.5.4)

=—1+14+1+42

We now define
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s i : 1
B = ; |:1(Sa x8y)+(s+1)8, - msa(sasv)]
YFo
: Sa(SaSto
= [i(sa X Siot) + (5 +1) Stor — (Sﬂ“)} (5:5.5)

and its Hermitian conjugate,

st i . 1
Ba :5; [1(Sa><55)(S+1)55+S+1(SO¢SQ)SQ].
B#a

Obviously, Bg annihilates every spin singlet, and ’1/159 > in particular. With
(5.5.5), we may write

3 (DiTDi + B(S;TBi)

(03

1
2s+1

Ly e + Wans [(sasa)(sasw) +i8,(S5 x 8,) — (s + 1)5[357}

o 2 s+ 1
BiyFo
T
s+ 1
a#p
B SR CE AT A AR A SLE SRR
o 2(s+1)
aFEPEYF

=(2543) Y wappSaSs — D Wapy (8a55)(SaSy) + (5a5,)(SaS5)

2
a#B a8,y (s+1)
ByFa
N(N?+5) s+1
+s(s+1)2 ( 5 ) _ 5 Sz, (5.5.6)

where we have used (B.15) and (B.20). With the Hamiltonian (5.3.41) and the
ground state energy (5.3.42) derived in Section 5.3, we may write

1 + i s+1
DS DS BS BS 2
(25 +1)(2s + 3) za: ( o Mot Ba a) + 2(2s + 3) Stot
_ Z 54853 _ 1 Z (5455)(SaS,) +(545,)(SaSp)
Sl P 26+ D@53 2 (e 15— )

aFt B,y
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s(s+1)2 N(N%+5)
25+3 12

N2
- [HS - Eg} (5.5.7)
Since all the operators on the left hand side of (5.5.7) are positive semi-definite,
i.e., have only non-negative eigenvalues, the operator H® — Ej on the right has
to be positive semi-definite as well. Furthermore, since all the operators on the
left annihilate |7,/15q > we have shown that |1/)§ > is a zero energy ground state of
HS — Eﬁg . Exact diagonalization studies [141] carried out numerically for up to
N = 18 sites for the S = 1 model and for up to N = 12 sites for the S = %

model further show that |1/16g:1> and ’1/}5 :%> are the unique ground states of

(5.3.41). We assume this property to hold for general spin S, but are not aware
of any method to prove this analytically.

Note that the derivation using the operators D*Z is actually the simplest
derivation of (5.3.41) we are aware of. As compared to our original derivation
in Section 5.3, it has the advantage that, except for the tensor decomposition of
(87)2%(S7)?¢ spelled out in Section 5.3.2, we only needed the formula (D.3.8)
for the vector content of S7.555%, but not the significantly more complicated
formula (4.5.22) for the scalar component of To(l)aTg7 derived in Section 4.5.3.
That we have arrived at the same model twice using different methods gives us
some confidence in the uniqueness of the final Hamiltonian (5.3.41).

5.5.2 A variation of the model

The analysis in the previous section suggests that another, closely related Hamil-
tonian is positive semi-definite as well. Writing the product of prefactors (5.5.4)
as

o + o+ 1
T 13t t _2<wam + oy — 2)7 (5.5.8)
Na =N MNa — Ty

we can derive a model directly from

> ps'Ds,

[e3

without any need to introduce the operators Bg and BgT. This yields

1 t
D?'D?
25+1Z oo

(03
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N Y A [CEAT SRR

oy s+1
s (o 1) [(SuSa)(8uS1) + (SuS)(8uS)
a%; ( sy 4){ 26T D) ( +1)Sﬁsd
a#f#yEa
= (28+3) Z (waﬁﬂ — i)SaS,@
a#fB
(S Sﬂ)(s S) (Sasv)(SaSB)
- azﬂ: (%M ) 2(s + 1)
B,vsﬁZx
s(s +1)* ) waps i(s +1) Y Ss8,
a#pB a,Byy
By#a
=(2s+3) Z (waﬂg — i)SaSQ
a#pB
(S Sﬁ)(s S) (SaS’Y)(Sa‘S’B)
_ ; (waﬂ'y_) 2 £ 1)
Bk
+s(s+ 1)QN(NQ —4) B (s+ 1)(N—2)S$Ot’ (5.59)

12 4

where we have used (B.15) and (B.20). If we now define the alternative model

~ 272 1 1
S ="_ (—)SaS
N?lz o 2 1)70%

a#p
- (5= 1) eSS+ 5u8)(5u5)
= (7) —ny) 4 2(s+1)(2s+3)
aF#Byy
(5.5.10)
with energy eigenvalue
~ 272 s(s +1)2 N(N? —4) 72 s(s+1)? 4

Ef =-"— =———— - — 5.

0 N2 2s+3 12 6 2s+3 ( zv)’ (5:5.11)

we may rewrite (5.5.9) as
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271'2 1 ST S (S+1)(N—2) 2 S =S
| — N DD+ g2 | = g% —Ej.
N2 | (25 +1)(2s + 3) 2 DiDI+ 4(2s5+3) et 0

o

(5.5.12)

This implies that |1/)5q > is also a ground state of H with energy E’()S , as defined
in (5.5.10) and (5.5.11), respectively.

Since the maximal distance of 7, and 1 on the unit circle is 2, the shift in the
coefficients in (5.5.10) (as compared to (5.3.41)) effects that these coefficients go
to zero as the sites 7, and 73, 1, are maximally separated on the unit circle. The
alternative model (5.5.10) is hence more local than the original model (5.3.41).
It is possible that the alternative model (5.5.10) possesses symmetries (or even
an integrability structure) the original model does not share.

5.5.3 The third derivation

Finally, another translationally, parity, and time reversal invariant scalar oper-
ators which annihilates |¢§) is given by

> Sa.AL, (5.5.13)

where A? is given by (5.4.35),

Ai = Z WaBs [Sa(sa55) + (Sa55)sa +2(s+1) Sﬂ}
B
B#a

(SaS )Sa(SaS )+(SaS )Sa(SaS )
+ Z wa67|:_ B vs+1 ol B
B

Bw;a
+2(5+2) 5a(8551) ~ S5(505,) - (S250)S; |
With
Sa(SaSB)Sa =S, [SQ(SQSB) + 18, % SB]
= (s(s +1) - 1)Sa55,
5.(80.83)8y = 8a [SW(SQ.S'K;) — 168y Sa % SB]
= (Sasv)(sasﬁ) + 6ﬁw SaSBa

which follows from (4.6.23), (4.6.24) and holds for a # 3,7, we obtain
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3 S.AS =Y wass [25(3 +1)—1+2s+1)— 1} SaSs
a a#pB

3 (S455)(S0S,) + (S0aS,)(SaS
+ wam[ s—|-1) ) 6( ’Yerg 7( /3)
By
aF#B,y

+25(5+1)(s+2) S5S, — (S055)(SaSy) — (805,)(SaS5)|.

(5.5.14)
With (B.15) and (B.20), we find
N(N?+5 1
Z Wapy SpSy = s(s +1) % +2 Z WappSaSp — isgo‘m
a,B,y aFp
aFByy
and therewith
ZS@A 25(5+2)(25 +3) > waps SaSp
a#f
s(s+2)
—IEEEY sy [(Sa85)(SaS,) + (508, )(SaS5)|
a,f,
atb
N(N?
+2s(s +2)s(s + 1)? % —s(s+1)(s+2)82,.
(5.5.15)
We may rewrite this
1 s+1 9
Sa 7 S—
25(s +2)(2s + 3) za: ot 2(25 +3) "ot
_ Z 5.5 Z (Sa 55 )(SaS~y)+(SaS:)(SaSs)
= na = msl? 2(8+1 )25 +3) S —18) (e — 15)
aFf,y
s(s+1)2 N(N%+ 5) (5.5.16)

25+ 3 12

In other words, we obtain the model Hamiltonian (5.3.41) for a third time.
The present derivation is the most complicated one, and does not yield any
new insights, except that it further strengthens the case that there is a certain
uniqueness to our Hamiltonian.
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5.6 The case S = % once more

Finally, we wish to demonstrate that the general spin S model introduced and
derived in this section includes the Haldane-Shastry model as the special case
S =1

2
For S = %, the higher order interaction terms in the Hamiltonian (5.3.41)
simplify, as

1 3
(SaSB)zz_isaSB_'_Ev a# B, (561)

and
1
(5a55)(5a8y) +(5a5,)(8a55) = 5555’% aFPFEYF o (5.6.2)
We can verify (5.6.1) and (5.6.2) with

(5085)(SaS,) = S45:59.57

aary
_ gt (Lgis 4 Ligkgk)gs

F\4 27 ")t

X .
— 1588, + %sa(sﬁ X S.), (5.6.3)

which holds only for S = % and « # f,7. Alternatively, since 53‘2 = 0 for
S =3, T =0 for all m, and (4.5.22) reduces to
—S@SV +2 [(Sa55)(5a57) + (SQSV)(SQSB)] + 2557 5,85 =0. (5.6.4)

For 8 =~ and (3 # ~, this yields (5.6.1) and (5.6.2), respectively.
Substitution of (5.6.1), (5.6.2), and s = % into the general Hamiltonian
(5.3.41) yields

1

HSI%—E Z# SS—|—iSS il
= | 2 Tl \ S5t 255 g

1 558
R .

(e = 1) (M — 1)

o, B,y
a#fEvFa
_ 2 ¥ SaSp  LNWN?-1) 1o N
N2 = Ino -2 32 12 487 64
272 1 N(N?2+5) 1
=H"S 4 | - ——— 4 82 | 5.6.5
+N2[ 32 12 g e (5.6.5)
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The energy of the Haldane—Shastry ground state [i§®) is hence with (5.3.42)
given by

s s=1 272 1 N(N?+5) 2m2 N(N? +5)
B =Bt mn s m N w

which agrees with (2.2.5). Note that as the derivation in (5.6.5) stands, we have
lost the information that H"S — E} is positive semi-definite, due to the SZ,,
term. This information, however, can be recovered if we take the last term on
the left-hand side of (5.5.7) into account. The spin S model we have derived

here hence includes the Haldane—Shastry model as the special case S = %






Chapter 6
Conclusions and unresolved issues

The model.—In this monograph, we have presented an exact model of a critical
spin chain with spin S. The Hamiltonian is given by

b

- 1 i (5455)(SaS,) + (845,)(SaS5s)
25+ 1)(25+3) F (o = 113) (1l = 115
a#B,y

(6.1)

where 1, = eizﬁw“, a=1,...,N, are the coordinates of N sites on a unit circle
embedded in the complex plane. If we write the ground state of the Haldane—
Shastry model [65, 124], which is equivalent to the Gutzwiller state obtained by
projection of filled bands [59, 105, 36], in terms of Schwinger bosons,

|pls) = > BS(z1,. .0 20) al, . ooal bE LB |0)
{15 2Mm5w1,5.wn }
= Ui°[a’, b7 10), (6.2)
where M = % and the wy’s are those coordinates on the unit circle which

are not occupied by any of the z;’s, then the exact ground state of our model
Hamiltonian (6.1) is given by

s
) = (we[a"01]) " 10). (6.3)
The ground state energy is

21 S(S 4+1)* N(N* +5)

S _
Ey = N2 25+3 12

. (6.4)

169
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For S = %, the model (6.1) reduces to the Haldane-Shastry model. Since the

model describes a critical spin chain with spin S, the low energy effective field

theory is given by the SU(2) level k = 25 Wess-Zumino-Witten model [147, 155].
The Hamiltonian was constructed from the condition

1 _ -
QS = E m(sa )ZSSB y Qi ‘¢§> =0 VOK, (65)
p=1 "
B#a

which we obtained for S = % and for S = 1 from the two- and three-body
parent Hamiltonians of bosonic Laughlin and Moore-Read states in quantum
Hall systems, respectively, and then generalized to arbitrary spin.

Uniqueness and the quest for integrability.—Starting with the defining con-
dition (6.5), we constructed a total of three translationally, parity, and time
reversal invariant scalar annihilation operator for the state (6.3)—one directly,
and two by taking the scalar products of vector operators. All three operators
yielded the parent Hamiltonian (6.1). This attests are certain uniqueness to the
model.

Nonetheless, it is clear that the model is not completely unique. First, the
ground state (6.3) is trivially annihilated by all terms which annihilate every
spin singlet. For example, we could add the term

3 (SaStor)” (6.6)

[0}

with an arbitrary coefficient to (6.1). Then (6.3) would remain the ground state
as long as the operator HS — E()g were to remain positive semi-definite. (This
ambivalence was exploited in Section (5.5.2), when we derived the alternative
Hamiltonian (5.5.10).) Another three-spin term which annihilates every spin
singlet is given by (5.4.20), even though this term is not suitable as it violates
both parity and time reversal symmetry. If we allow for four-spin interactions,
there is a plethora of parity and time reversal invariant scalar operators we
could add.

Second, we could construct another parent Hamiltonian from the annihilation
operator

N oo N \2a—
Ea: Z Sa Sﬁ S’Y . Z (Sa )2552, E(X|w(§:1>:0vaa (67)
g1 = 18) (M =) 2= (1l = 115)
ByFo B#a

which we derived in Section 4.4.2. This Hamiltonian will presumably contain
five-spin interactions.

The issue of uniqueness of the model is relevant to the question of whether the
model, or a closely related model, is integrable. Preliminary numerical work [141]
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indicates that the model (6.1) is not integrable for finite system sizes, while the
data are consistent with integrability in the thermodynamic limit.

Momentum spacings and topological degeneracies.—The other highly impor-
tant, unresolved issue regarding the model concerns the momentum spacings
of the spinon excitations. In Section 2.4.5, we proposed that the spacings for
the S = 1 model would alternate between being odd multiples of & and be-
ing either odd or even multiples of {-. (Recall that odd multiples of §; corre-
spond to half-fermions in one dimension, while even multiples represent either
fermions or bosons.) Whenever we have a choice between even and odd, this
choice represents a topological quantum number, which is insensitive to local
perturbations. These topological quantum numbers span an internal or topolog-
ical Hilbert space of dimension 2% when 2L spinons are present. All the states in
this space are degenerate in the thermodynamic limit. This topological Hilbert
space is the one-dimensional analog of the topological Hilbert space spanned
by the Majorana fermion states [118, 112, 76, 131] in the vortex cores of the
Moore-Read state [108, 54, 55] or the non-abelian chiral spin liquid [53]. In
Section 2.4.7, we generalized these conditions for the momentum spacings to
the models with arbitrary spin S > 1.

The first unresolved issue with regard to our proposal is whether it is cor-
rect. In view of the established momentum spacings [52] for the spinons in the
Haldane—Shastry model, the construction of the state suggests that it is. Since
the model (6.1) is presumably not integrable, however, the momenta of the indi-
vidual spinons will not be good quantum numbers when more than one spinon
is present. (This is always the case, as the minimal number of spinons for the
models with S > 1 is two.) Nonetheless, the topological shifts can still be good
quantum numbers. In this regard, the situation is similar to the Moore-Read
state, where, when long-ranged interaction are present, the state vectors in the
internal Hilbert space are degenerate in the thermodynamic limit only.

Assuming that our assignment of the momentum spacings is correct, the next
question to ask is whether the picture applies only to the exact model we have
constructed in this monograph, or to a whole range of critical spin chain models
with § = 1. If it applies to a range of models, as we believe, the topological
space spanned by the spinons may be useful in applications as protected cubits.
The internal state vector can probably be manipulated though measurements
involving several spinons simultaneously, but it is far from clear how to do so
efficiently.

To study the spinon excitations systematically, it would be highly desirable
to apply the method reviewed in Section (2.2.4) for the Haldane-Shastry model
to the general model (6.1). Unfortunately, this does not appear straightforward.
The problem arises when we write out the SES; 518, term along the lines of
(2.2.36)—(2.2.40). When we evaluated the S; S, term in the Haldane-Shastry
model, we used the Taylor series expansion (2.2.39) to shift the variable 7z in
the function
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Y(215- oy 251518y Zjt1s - - > ZM)
Np

in (2.2.38) to z;. When we evaluate the action of the S;{S; StS,, term in the
S = 1 model, we need to shift “two variables” 7, in the function

w(zla"'7zj—lana7zj+la'" azk—lana7zkr+1a"'7ZM)

na

via Taylor expansions, one to z; and one to z,. This yields for z; # 2z

w(zla"'anaa"wnav"';ZM)

na
Y e ) e ) OO e ) g
pard I — m! 82} oz 22k ' '

The sum over o we need to evaluate is hence

2 _ ) — m
S Talle =) U Z2)™ gy (6.9)
—~ (Na — 2j) (Mo — Zk)
NaF2j 2k

In the Haldane-Shastry model, the corresponding sum (2.2.40) is non-zero only
forl = 0,1, and 2. In the present case, however, further terms arise for [+m+1 =
N. These yield terms with very high derivatives when substituted in (6.8). It is
not clear whether an analysis along these lines is feasible.

Static spin correlations—Another open issue is the static spin correlation
functions of the ground state (6.3). We conjecture that it can be evaluated via a
generalization of the method employed by Metzner and Vollhardt [105] for the
Gutzwiller wave function.

Generalization to symmetric representations of SU(n)—The generalization
of the model to symmetric representations of SU(n), like the representations 6
or 10 of SU(3), appears to follow without incident. If we write the SU(3) Gutz-
willer or Haldane—Shastry ground state [81, 82] in terms of SU(3) Schwinger
bosons bf, 7, gt (for blue, red, and green; see e.g. [49]),

[e®)y = wgsbt, rt, g'710), (6.10)

the generalizations to the SU(3) representation 6 and 10 are given by

jut) = (we [bTﬂ“T,gT])k 0}, (6.11)

with £ = 2 and k = 3, respectively. The generalization of the defining condition
(6.5) is
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1
Q=3 ——U);, Q) =0 Va, (6.12)
g1 e =18
BF#a
where I~ = rTb is one of the three “lowering” operators for the SU(3) spins.

We assume that the construction of a parent Hamiltonian along the lines of
Chapters 4 and 5 will proceed without incident. The momentum spacings in the
SU(n) models are likely to follow patterns which have no analog in quantum
Hall systems, and have hence not been studied before.

Generalization to include mobile holes.—It appears likely that the model can
be generalized to include mobile holes as well, a task which has been accom-
plished for the S = 1 model by Kuramoto and Yokoyama [90].

Conclusion.—We have introduced an exact model of critical spin chains with
arbitrary spin S. For S = %, the model reduces to one previously discovered
by Haldane [65] and Shastry [124]. The spinon excitations obey non-abelian
statistics for S > 1, with the internal Hilbert space spanned by topological
spacings of the single spinon momenta. There is a long list of unresolved issues,
including the quest for integrability and the viability of potential applications
as protected cubits in quantum computation.






Appendix A
Spherical coordinates

The formalism for Landau level quantization on the sphere developed in Section
2.1.5 requires vector analysis in spherical coordinates. In this appendix, we will

briefly review the conventions. Vectors and vector fields are given by

r=re,

v(1) = vre, + vgeg + vyey,

with
cos ¢ sin 6 cos p cos 6 —sing
e, = | sinpsing |, ey=|sinpcosd |, e,=| cosyp
cos —sind 0

where ¢ € [0,27] and 6 € [0, w]. This implies

e X ey =e, €egxXe,=e, €,Xe =ey,

and
e, ey e,
o0 — " o0 — o0 "
de, 0 0
5‘2 =sinfe,, %ZCOS@BW, %z—sin@er—cosﬂeg.
With
V = — + lg + Li
“or T 00 T % rsing Op
we obtain
Vo — la(r%r) n 1 O(sinbuvy) 1 Ov,

r2  Or rsinf 00 rsinf d¢

(A1)

(A4)
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Appendix B
Fourier sums for one-dimensional lattices

In this appendix we collect and proof some useful formulas for the explicit
calculations of the Haldane—Shastry model. In particular, we provide the Fourier
sums required for the evaluation of the coefficients A; in (2.2.40) using two
different methods, first by contour integration loosely following Laughlin et
al. [96], and second by Feynmanesque algebra.

For 1o = ¢! with o = 1,..., N the following hold:
a)

o = 1. (B.1)
b)
N
> it =Népo mod N. (B.2)
c)
N
H n—na) =0V — 1. (B.3)
Proof: The 7, are by definition roots of 1. ]
d)
N
1 NphN—1
3 - (B.4)
— N —Na N =1
Proof: Take 6% of (B.3) and divide both sides by n™¥ — 1. a
e)
N
Z T . (B.5)
=1 n-— 7704 -1
Proof: Substitute 1, — n—a, n— ; in (B.4) and divide by (—n). O
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/\
i o
L] . /C . . . Y
Fig. B.1 Contours for integrations
f)
N 2
3 U NN DW=
a,B,y=1 (7704 o 777)("75 - 77’)’) 3
aFBEYFo

Proof: Use the algebraic identity

a2 bQ C2
=1 B.
@ D=0 G-ab-9  c-al-b (B1)
O
g)
= 1 (N — 1)(N - 2)
> = . (B.8)
o570 (e = 1)(ns = 1) 3
a#pB
Proof: Substitute nq — 1a7y, 173 — N0y in (B.6)
h)
N-1 .
e N i<m<nN (B.9)
a=1 Mo — 1 2

Proof by contour integration: Use Cauchy’s theorem [93] for the function

fe) =2, N2z,

with the contours shown in Fig. B.1 yields

N-1 N-1 -
a:1n0‘_1 27Tia:1 cz—1z—n4

N j{ zm~t
S S S, P
21 Jo (2 — 1) (2N —1)
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N Zm—l
C2mi Jo (= 1)(EN - 1)
N———————

=f(2)

dz

where we have first used (B.5) and then deformed the contour C such that
the radius of circle goes to infinity, used that the circle at infinity does
not contribute to the integral as the integrand falls off as at least 1/2% for
m < N, and finally reversed the direction of integration to replace C by

C.
Since f(z) has a pole of second order at z = 1, the residue is given by
_i 2pi i 9(2)
C_1 _;I_% @(z_ 1) f(Z) - _;qu 92(2)
=1/9(2)
With
1 ZN -1 ol k—m 2—1
9= = >z 5 N, (B.10)
k=1
al N(N +1)
g'(z):Z(k —m) 2kl e 5 —mN, (B.11)
k=1
we obtain Nt
— m N+1
Y e — Ne, = WNAD
a=1 Mo — 1 2

Proof by algebra: With the definition

N-1

Sy = &
Zna_]-
a=1
we find
N—1
-1, 1<m<N-1
Sm, *Sm: ;n: ’ - - ’
A Z” {N—l, m=0.
a=1
and
N—1 1 N—1 .
So = =— S =5,
a:lna_l ;na_l

where we substituted n, — ni This directly implies
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N -1 N +1
51:750:7 and Sm:( ;_ )fm, 1<m<N.
i)
N—1
1 N -1
=— . (B.12)
= Mo — 1 2
Proof: Use (B.9) with m = N O
j)
N—-1
m N2 —1 _ —
= (o —1)? 12 2
(B.13)
Proof by contour integration: In analogy to the proof of (B.9) we write
N—1 o
a _ d
2 1P~ 2m 27{ T

ym— 1

= d
omi Jo (- 12(zN — 1)
N Lm— 1
. d
271 Jor (2 —1)2(zN — 1) :
~—— ———
=h(z)

where we have again used (B.5) and replaced the contour C by C’. As h(z)
has a now pole of third order at z = 1, the residue is given by

2 " ’ 2
ey = Lim @ (z—l)h()zlim(—g(z)—&-(ggz))).

2 Z—>1 sz —_——— z—1

=1/9(2)

With ¢(1) and ¢'(1) as given by (B.10) and (B.11) and

N
g'(2) = D (k= m)(k —m —1)zFm2
k=1
=, T 1()3(2N+ o (2m + 1)% m(m + 1),

we find after some algebra that —Nc_; equals the expression on the right
of (B.13). ]

Proof by algebra: With the definition
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N-1 777n
R, = o ,
a=1 (7704 - 1)2
we find
N-1 .
Rerl_Rm: la 1 —Sm
a=1 (na - )
and
N-1
1
Ry = 5
a=1 (na - 1)
B N—-1N-1 1 N—1 1
a=1 f=1 (0 = 1)(ns — 1) oyt (1o —1)(ng — 1)
a#B)
B (N -1)(N -5)
12 ’

where we have used (B.12) and (B.8). This implies

Rm+1:Ro+So+ZSn

n=1
N2—1 &K [/(NH+1)
-T2 +H§ ( 2 _”>
B _N2—1 +m(N—m)
12 2
for 1 <m < N. O
k)
N-1
Z 1 _ WDV -5) (B.14)
—3 . .
a1 (N — 1) 12
Proof: Use (B.13) with m = N O
)
N-1 2
nm N*—1 m(N—m)
— <m<N. B.1
a=1 N — 112 12 2 » Osms (B.15)
Proof: Use (B.13) with m — m + 1. O
m)
N
St (B.16)
o1 Mo — 78

B
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Proof: Substitute 7, — 17%, ng — % in one of the terms or use (B.9) and

(B.12). a
n)
N
1 1 2
Y —— =y . (B.17)
S e =M Na =Ty e =T |15 =
aFBy
B#Y
Proof: With
1 1 1 1
_ ( - ) (B.18)
(Mo =18)(Na —1y) M3 =7y \Ta =N Na — 1y
and N
N-1
T - S (B.19)
=1 e 2 Ty = Mg
a#tBy
B#Y

which follows directly from (B.9), we write

ol (e )
=1 Mo = 118 N = My a—1 Uﬂ—ﬂv =N Mo =Ty
a# By a# By

BF#y BF#y

) (_m+nﬂ>
ng — My Ty =T 13— 1y

2
s — Ty B — Ty

2
M .
ng =My Mg — 1l

m]
o) For symmetric operators Ag, = A, it holds:
a A 2A
B B
2 (7 *77):1 —7y) Z|77 *7; ZAM (B.20)
wfmer Ul =M8)0a =1h) 22 ng =m[* 2 22
aFBFEVFo

Proof: Use (B.17). O



Appendix C
Angular momentum algebra

In this appendix, we review a few very well known relations for angular momen-
tum operators [40, 12]. The components of the angular momentum operator J
obey the SU(2) Lie algebra

[J“,Jb] =ig®J¢ for a,b,c=x,y,z. (C.1)

Since [J 27 Z] =0, we can choose a basis of simultaneous eigenstates of J? and
J?,

J?j,m)y =405+ 1) |j,m),

' ' (C.2)
J?j,m) = mlj,m),
where m = —j,...,j. With J* = J* +1JY, we have
[J%, J%] = £J*. (C.3)
We further have
JET™ = (J)? + () —i[J5, )= J* = (J*)* + J”, 4
A4
JJT =07 —(J)? - J7,
and therefore
[J*,J7] =2J" (C.5)
Equations (C.3) and (C.4) further imply
JE|jm) = Vi +1) —m(m£1) [j,m£1), (C.6)

where we have chosen the phases between J~ |j, m) and |j,m 4 1) real.
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Appendix D
Tensor decompositions of spin operators

In this appendix, we will write out the tensor components [40, 12] of all the
tensors of different order we can form from one, two, or three spins operators.

D.1 One spin operator

A single spin S transforms as a vector under rotations, which we normalize
such that the m = 0 component equals S? (see (3.5.10) in Section 3.5). The
components of V™ are

V= —%S*,
V0= % [S7, V1] =957, (D.1.1)
1 1
Vil=— [,V =—5".
\/Q[ ] V2

D.2 Two spin operators

Since each spin operator transforms as a vector, and the representation content
of four vectors is given by

191=05142,

we can form one scalar, one vector, and one tensor of second order from two
spin operators S; and Ss. The scalar is given by
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1 — — Z QZ
Uip =818 = 5 (SILS2 + Sl S;) + 5152 (D21)

and the vector by —i(S7 x S2). Written out in components, we obtain

1

i

Vi = \/5(51 x Sy)T = 7 (stg — st;) ,
1
Viy = ~i(S1 x 82) = 5 (5185 — 5757) . (D.2.2)
— 1 - 1 — Qz Z Q—
V' = —E(Sl x 83)" = 7 (5795 —5755) .

With regard to the 2nd order tensor, note that S’f S;r is the only operator we
can construct with two spin operators which raises the S?, quantum number by
two. It must hence be proportional to the m = 2 component of the 2nd order
tensor. As there is no particularly propitious way to normalize this tensor, we
simply set the m = 2 component equal to SfL S;r , and then obtain the other

components using (3.5.9). This yields!
T122 = Srsja
1 — - Z z
T, = 3 (ST + 85, Th] = =S755 — 5753,

1
Sy + 85, Th] = 7 (48755 — St Sy — 5755, (D.2.3)

(ST + S5, Tfy] = 5155 + Sy 55,

1
T102:%[
1

V6
_ 1. S s
T122:§[Sl +527T121}:Sl SQ'

-1 _
T12 -

Equations (D.2.1) and (D.2.3) imply

1 2 1
3 (5785 +5755) = 55132 -7 Ty, (D.2.4)
7 QZ 1 1 0
3152 = 55152 + % T12. (D25)
Combining (D.2.4) with (D.2.2) yields
tae 2 . . 1 0
Sl SQ :*5152*1(51 XSQ) 77T12,
3 NG
5 1 (D.2.6)

1 We denote general tensors of order j with 7(7) and 2nd order tensors with 7.
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For S; = S5, (D.2.6) reduces with §; x S; =157 to

2 1
Sty = gS% + 57 - %Tﬂ,
1

V6

) (D.2.7)
S;Sf =287 5%~

3 T

D.3 Three spin operators

Since
11®1=003-102-203,

we can form one scalar, three vectors, two tensors of second order, and one
tensor of third order, from three spin operators S, S2, and Ss.
The scalar is given by

Uioz = —iS1(S2 x S3)

1
= 55{ (5585 — S5 57) + 2 cyclic permutations
1 (D.3.1)
= 5(5?5;55 + 8785 9% + S 9585
— 578y S — S S+ S% — SfS;Sg).
The three vectors are given by
51(5253), Sl(Sg)Sg, and (5152)53, (D32)

where the scalar product in the second expression is understood to contract S
and S3. The components for each m are according to the conventions specified
in (D.1.1). For later purposes, we write for the m = 0 components,

Viros = S{(8283) = - (578355 + 5783 SF) + 515555,

Vohas = S1(53)85 = 5 (Sy 8354 + 817 S585) + 518555, (D.3.3)

N = N~ N

V?ng = (5152)S§ =

+ o— Qz — o+ oz 7 Q7 QZ
i (5’1 Sy 55+ 5755 5’3) + 5715555.

To obtain a tensor operator of second order, or more precisely the m = 2 com-
ponent of it, all we need to do is to form the product of the m = 1 components of
two vector operators constructed out of the three spins, like S; and —i(S2 x S3)
or —i(S1 x S2) and S3. In this way, we construct the tensor operators of second
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order

2
T

123 = _iSfr(S2 X 53)+7
(D.3.4)
T 195 = —i(S1 x S2)* 57

The other components are obtained as in (D.2.3). As we are primarily interested
in the m = 0 component, we may use (D.2.3) directly to write

! Z e
Tg’123 = —%[45?(52 X S3)Z — ST(SQ X Sg) — Sl (SQ X Sg)+]

7 [25% (S5 55 — S5 S5 ) — St Sy S5 + S S595

(D.3.5)

+ 87 Sy 55 — Sy 8557,

and similarly for Tj),,4, which can be obtained from T} |54 by a cyclical permu-
tation of the superscripts +, —, z. Note that there is no third tensor of this kind,
as the sum of the three tensors obtained from (D.3.5) by cyclic permutations of
the superscripts equals zero.

We obtain the tensor of third order with the method we used to obtain the
second order tensor (D.2.3) formed by two spins:

W1323 = —51*5{53*,

W1223—7[S + Sy +S37W123]

%

5

[Sl ,ST] 5555 + 2 cycl. permutations

2
=\/3 St S+S+ + 2 cycl. permutations,
Wipg = f [ST+ 85 + 85, W]
1
= —15( [S;Sﬂ SFSf + 5% [S{ + S;,S’;S;r] ) + 2 cycl. perms.
1
\/T(S Sy Sy —4575555) + 2 cycl. permutations,
1 _ _ _
W&s = ﬁ [51 + 5y + 53 7W1123]
1 - - — — — 7 Q7
= m(& [Sy +85,8585] —4[Sy +5;,51535] S

— 45753 [S5,57] ) + 2 cycl. permutations



D.3 Three spin operators

4 Z Q7 Qz
T SI83S%

= (S Sy S5+ 5 permutations) +

S\

Wi = f [ST + S5 + S5, Wiy
= T(S 1Sy S5 — 457 855%) + 2 cycl. permutations,
_ 1 _ _ e
Wias = J10 [ST + S5 + 55, Wi
2 .
= \/;Sl S5 S35 + 2 cycl. permutations,
_ 1 o _ o
Wia3 = 7 [ST + S5 + 55, W3]

= 578555

189

(D.3.6)

The permutations here always refer to permutations of the superscripts +, —, z,
as otherwise we would have to assume again that none of the three spin operators

are identical. In particular, writing out the m = 0 yields

1
W1023 = -

7
+ ST Sy S5+ S SESY + S15455 ) +

Sy S SE + ST S5S, + 578y ST
4

—= 575555,
\/5 1~2~3

Combining (D.3.3) and (D.3.7), we obtain

Z Z Z 1
S1555% = (Vao,123 + Vb?123 +V, 123) —— Wihs,

2v5

ot =

and hence

S1 (5585 4+ 95 87) = V2153 — 575555

4 1 1
=V — = Viog — = V2
5 a,123 5 b,123 5 c,123 — 2\/‘

From (D.3.1) and (D.3.5) we obtain

1., _ _ 1 1
551 (S2+S3 — 5, S?T) 3 Uiz + %Tgm&

Combining (D.3.9) and (D.3.10) we finally obtain

Wihs.

(D.3.7)

(D.3.8)

(D.3.9)

(D.3.10)
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1

” _ 1 1 1
575585 = +§ Uiz + 5 (4Va0,123 - Vb?123 - ‘/::(?123) + 76 Tg,ms W W3
1 1
= +551(52 X Sg) + g [45%(5253) — 51(55)53 — (5152)S§]
42 Ly (D.3.11)
\/6 a,123 2\/5 123> s
L o 1 0

o 1 1
515, S; =73 Uiz + 5 (4V£123 - Vb(,)lzs - Vc(,)123) - % Ty03 — T\/g 123

1 1
= —551(52 X Sg) + g [45%(5253) — 51(55)53 — (5152)S§]

1 1
7 TQ 193 — e Wihs.

(D.3.12)
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