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We explore the consequences for macroscopic effective Lagrangians of assuming that the
momentum density is proportional to the flow of a conserved current. Such a relation holds
in models that microscopically contain only one type of charge carrier. We show that such a
relation leads to certain universal corrections to the usual effective Lagrangians considered
for the description of superfluids. A fully consistent derivation of the superconducting Hall
effect predicted by London is given. Some related issues that arise in anyon superconduc-
tivity are discussed: the linear Hall effect is derived in a transparent way, and the vanishing
of the b term (under appropriate assumptions) is demonstrated formally. Some other
possible applications are sketched.

1. Introduction

It is a common procedure in physics to form effective Lagrangians to describe
the low-energy dynamics of interacting systems. This is useful when at low
energies there are rather few degrees of freedom capable of being excited. These
degrees of freedom are then described by quasiparticle fields, and their
interactions are described by an effective Lagrangian written in terms of these
quasiparticle fields. Typically the effective Lagrangian is truncated by retaining
only a few terms of low order in temporal and spatial gradients, as is appropriate
for an approximate description at small energies and momenta. The terms
retained in the effective theory must exhibit the symmetries of the underlying
microscopic theory either explicitly, or, in the case of spontaneous symmetry
breaking, in the Nambu-Goldstone or Higgs modes.

Some symmetries of the microscopic theory may be realized trivially, with all
the quasiparticle fields transforming as singlets — this is a form of confinement.
Another class of constraints on the effective theory comes from the requirement
that they match anomalous Ward identities of the microscopic theory.!

In this paper we shall exemplify yet another type of constraint that may arise on
effective Lagrangians. It is the requirement that algebraic identities among the
operators implementing symmetries that hold in the microscopic theory must be
maintained in the effective theory.
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The specific identity we shall consider here is

€
Ji=‘r;T0i (1.1)

where T, is the momentum density and J, is the density of a conserved current.
This identity has a simple interpretation. It states, for a Galilean invariant
system, that all the momentum, and all the current, is carried by a single species
of particle with charge-to-mass ratio e/m.

Since hydrodynamics embodies the laws of momentum flow, the consequences
of (1.1) can be considered as consequences of hydrodynamics for current flow. In
the context of superfluidity and superconductivity, this equation may be
considered as the formal expression of the hydrodynamic analogies sometimes
employed in these subjects.

We will now describe two typical examples of systems obeying (1.1). The first is
a simple model of a BCS-type superconductor, and the second is an exotic
“anyon” superconductor.’”’

For a simple model of a BCS superconductor, consider a spin one-half Fermi
field ¢, (a = 1,2 labels the spin degrees of freedom). Consider the Lagrangian

f= f dt f d"x (‘pa*iaod/u_ﬁai‘p*uai¢a+j‘(¢a*‘pa)2> . (1'2)

This system is not exactly soluble. However, for A > 0, the interaction term is
attractive, and familiar arguments indicate that in the presence of a non-zero
chemical potential, the many-body system with Lagrangian (1.2) is a BCS-type
superconductor. In fact, (1.2) might well be regarded as a minimal model of BCS
superconductivity. For our purposes, the interest of (1.2) focuses on the fact that
— as one may easily verify — the relation (1.1) is obeyed by this system, if J; is
the conventional conserved current associated with the conserved charge Q =
e [ d"x (y,*y,). The physical reason for this is that all fields entering (1.2) have
the same charge to mass ratio.

Our second example of a system obeying (1.1) is a two-dimensional anyon gas.
One considers in two spatial dimension a system of identical particles (conserved
in number and with no internal quantum numbers) of fractional statistics, with
no interaction except that which is implicit in the statistics. As described at length
in Ref. 3, such a system obeys (1.1), essentially because of the common charge to
mass ratio of the anyons.

For values of the parameters for which these systems are superconductors (for
positive 4, in the first case, and for certain values of the statistics, in the second
case), they can be described at long wavelengths in terms of a single massless
scalar field ¢, which is a conventional Goldstone boson in the first case and plays
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a somewhat similar role in the second case. Our challenge in this paper is to
understand how, in terms of such a massless scalar field, one can implement both
an underlying symmetry and the relation (1.1). It is well known that the former
can be implemented by requiring the phenomenological Lagrangian to be
invariant under ¢ — ¢ + constant, but the implementation of the additional
relation (1.1) by a single massless scalar is not standard and may even look
impossible at first sight.

Both for BCS superconductivity and for anyon superconductivity (which may
or may not be realized in nature in the new high 7, materials), the relation (1.1) is
limited to idealized models, not real materials. Nevertheless, understanding the
consequences at low energies of a relation such as (1.1) is of methodological
interest. Also, the investigation of the consequences of the simplest idealized
models of BCS and anyon superconductors is illuminating. This may be self-
evident in the case of the novel anyon superconductors; but actually, even in the
more familiar BCS case, there is something to be learned by studying the
consequences of (1.1), as we will now discuss.

The conventional Hall effect arises if a conductor is placed in a magnetic field
in, say, the z direction, with a current flowing in, say, the y direction. Because of
the v X B force on the current carriers, there results an electric polarization of the
material in the x direction and an electric potential gradient in that direction.
This, at any rate, is the familiar story in an ordinary conductor.

One might believe that in a superconductor, this potential gradient would be
shorted out and the Hall effect would be absent. Nevertheless, London® argued
nearly half a century ago that a Hall-like effect would occur in a superconductor,
though with a different physical mechanism. He considered what we would now
call a Type-I superconductor, with electric currents carried in a small boundary
layer, and argued that when a current J is flowing, there would be a potential drop
across the current carrying layer, proportional to J°. (Since the magnetic field B
present in this situation is proportional to J, the potential drop is proportional to
J X B just as in the standard Hall effect in an ordinary conductor.) We will call
this effect the London Hall effect.

London’s reasoning was based on a hydrodynamic model of superconductors,
which influenced the modern understanding in terms of spontaneously broken
symmetry but does not coincide with it. One of our goals in this paper is to clarify
the realm of validity of London’s reasoning, as judged from a modern standpoint.
We will argue that the additional input required to justify London’s formula for
the London Hall effect is precisely (1.1). This relation is a precise mathematical
statement of a link between the particle current and the momentum density
which justifies London’s considerations of quantum hydrodynamics. To ensure
the validity of (1.1), the effective Lagrangian must contain certain non-minimal
terms with definite coeflicients; these terms lead to the London Hall effect. For a
realistic BCS superconductor, (1.1) is not valid so that London’s formula will not
be precisely accurate; but one still expects a London Hall effect of the same order
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of magnitude, since the relevant non-minimal terms should be present with
coeflicients of the same order of magnitude.

The contents of the paper are as follows. In Sec. 2 we discuss Lagrangian
realizations of (1.1), both as an exact relation and as an approximate relation in
the presence of electromagnetism. Some aspects of time-dependent London and
Landau-Ginzburg theory are clarified. In Sec. 3 we discuss the London Hall effect
in superconductors, and show using (1.1) that its magnitude is determined in
terms of the effective mass of the condensed species. London originally thought
this effect would be too small to measure. With advances in technology, however,
it has become accessible to observation.’ In Sec. 4 we discuss two applications of
the same circle of ideas to the phenomenology of anyon superconductors. First:
there is a Hall effect linear in the current (at zero external magnetic field) whose
fundamental nature we clarify and emphasize. Second: the hydrodynamic
identity (1.1), applied to the ideal anyon superconductor, leads to a demonstra-
tion of the vanishing of the b term.? It was in this context that we were originally
led to the considerations of this paper. Sections 3 and 4 also contain some
remarks on how experiments to measure the relevant effects might be carried out,
and on their theoretical significance. Finally in Sec. 5 we briefly consider possible
generalizations of the basic idea.

2. Corrections to Effective Lagrangians

We first consider the implementation of (1.1) in the simple case of a real scalar
field ¢. This will be sufficient for the description of longitudinal sound modes.
We impose the symmetry

¢ —>opta 2.1)

that we shall seek to associate with particle number conservation. The standard
Lagrangian to describe sound waves with speed of propagation v is of course

p 1

L,= m {—; Y (6,~¢)2} . (2.2)
m Lo

(The overall multiplicative factor, which of course does not affect the equations

of motion, has been chosen for later convenience.) This Lagrangian respects (2.1).
However, it does not at all respect (1.1); indeed

oL
J,‘= e = —'pe

%, 2.3
o i (2.3)

2 We follow the notation of Ref. 3.
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while

oL p
- 3 = - 6 a,- . 2.4
560¢ 1¢ O¢ d) ( )

Ty = 2
mv

Looking at the canonical expressions for J and 7, we realize that our
fundamental relation J, = e¢/m T, will be satisfied identically for Lagrangians of

the form
1
L= P(60¢ - (6,-d>)2>, (2.5)
2m

where P is an arbitrary polynomial. The corrected L-which, in a sense presently to
be made precise, reduces to the simple Lagrangian (2.2) in the long-wavelength
limit, is constructed with a quadratic P:

1 p I 2
L.=pl a0 ——(9; 2)+ (a ——(9; 2). 2.
p( o® 2m( ®) P o 2m( ®) (2.6)

Expanding this expression, we find

p
8m3v?

L. = pod+ Ly —z—lé’;l;aoas(amz + (@:6(3,6). @.7)

The first term on the right-hand side is a total divergence, and does not contribute
to the equations of motion. Nevertheless it is not devoid of physical meaning.
Indeed, it contributes the constant value pe to the density J,,. This represents the
charge density when the fluid is uniform and static. Its value explains our choice
of normalization.

The last two terms on the right-hand side are true dynamical corrections to L;;
they certainly do aiter the equations of motion. They may be neglected if ¢ is
small or if it is sufficiently smoothly varying in space and time. In general,
however, they must be included.

For later use let us record the full corrected expression for the charge density:

_ e pe .
Jo = pet+—— 309~ ———(3,6)". (2.8)
mv 2m-v

Now let us consider the case of a complex scalar field ¢, with the symmetry

Y —e“y. (2.9)
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The standard non-relativistic Lagrangian for this field, leading to the dispersion
relation E = p%2m between energy and momentum, is

—; 1
Lo =~ (4300 — 0¥ *¥) =5 -0 a0 210

The charge density and current are

J=ie{5L V- oL *}= * (2.11)
0 330 &w*w A '
Ji=i {—‘EL—xp— oL *}=ie—( *90 — 0 *Y) (2.12)
i e ) 56,~¢*¢ m v*oy —9; . .

It is not difficult to see that the current and the canonical momentum density are
indeed related according to (1.1).

Equation (2.10) — after the “‘minimal coupling” replacement 3, — 9, + e4, —
is sometimes proposed as the effective Lagrangian to describe superconductors.'®
The basis of this proposal is the intuitive argument that one should have a
Schrodinger equation for the Cooper pairs; and variation of (2.10) does of course
generate precisely the Schrodinger equation for . (In this interpretation, of
course, m and e are understood to be twice the mass and charge of the electron.)
However, this argument cannot be quite correct. The theory of spontaneous
symmetry breaking tells us that in the absence of electromagnetism the formation
of a condensate of Cooper pairs should lead to the appearance of a Nambu-
Goldstone boson field with a linear dispersion relation near zero. The excitations
of this field will dominate the low-energy, long-wavelength behavior of the
model. They should be described by a Lagrangian like (2.7); i.e. essentially as
sound waves.

To obtain a Lagrangian that still satisfies J,= e/m T, but also behaves properly
in the low-energy, long-wavelength limit, we proceed by analogy with our
treatment of the real scalar field. It is not difficult to find the relation that replaces
(2.5); it is

L=pP (%i(\&*aow — 8*Y) —zia,«p*a,«w) = P(Ly). 2.13)
m

Again, we expect that a quadratic P should be sufficient. To fix the coefficient of
the square term, let us consider how a Nambu-Goldstone mode described by (2.7)
will be obtained. It should correspond to the ansatz

¥ = Ve® (2.14)
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describing a space-time dependent symmetry operation on the condensate. A
simple calculation suffices to show that taking

L.=Ly+

L, 2.15

does the job, with V' = \/; .

In this way, we are able to accommodate the fundamental relation (1.1) in a
Lagrangian sufficiently flexible to describe the dynamics of a simple Nambu-
Goldstone field, and also to allow for variations in the magnitude of the order
parameter. In our opinion, a Lagrangian such as (2.15) is (after the replacement of
ordinary by gauge covariant derivatives) the proper starting point for the
discussion of time-dependent phenomena in the Landau-Ginzburg framework.'!
It should be remarked, in this connection, that the constraint J, = e/m Ty, is
empty when applied to non-derivative couplings.

Although our main focus shall be on the implications of the correction terms we
have found above for superconductors, we shall now make a few brief remarks
concerning their physical interpretation and implications for neutral systems.

i) Consider first Eq. (2.8) for the charge density. The new gradient term implies
that even for stationary flow, with all time-derivatives vanishing, the density
varies. The density is least where the current is greatest. This phenomenon
reflects the physics of Bernoulli’s principle: in a rapid-flow region there is low
pressure, and thus low density.

ii) The prescription 8, — d; — 1/2m (3,¢)9; that results from (2.5) is highly
reminiscent of the usual prescription 9, — 9, + (v - V) for the convective deriva-
tive. (There is a peculiar factor of two discrepancy.) This suggests that our
corrections embody the effects of inertia. This suggestion is reinforced by the fact
that the corrections vanish in the limit m — oco. Our corrections become
quantitatively significant for the bulk flow when the speed associated with the
particles becomes comparable with the speed of sound, or precisely when

1
—3,¢~ v. (2.16)
2m

Of course, there are other corrections to the simple equations for the propagation
of sound in this regime, especially (in an ordinary gas) due to viscosity. We have
not carefully investigated whether there are regimes in which our corrections are
the dominant ones, although this would seem to be plausible for superfluids.
Significant too is the fact that (2.5) is essentially the unigue solution to

oL, _ L
30,0 60,

(2.17)
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This means that it is difficult to incorporate gradient terms other than those aris-
ing from the modification of gy, i.e. from convection. (We have not carefully con-
sidered possible non-canonical modifications of T, and J;,, so we cannot
completely rule out the possibility that (1.1) may be solved in other ways.) The
vanishing of the b term in anyon superconductivity follows from this considera-
tion, as we shall elaborate in Sec. 4.

iit) The fact that the correction are non-linear means that they induce scattering
and decay of sound waves. Again, we have not attempted to investigate under
what circumstances, if any, this is a dominant mechanism.

3. The London Hall Effect

When the conserved current J is coupled to the electromagnetic field, relation
(1.1) can no longer be exact. This is because the electromagnetic field carries
momentum but does not contribute to the electromagnetic current. Nevertheless
we expect that a relation similar to (1.1) will be approximately valid, because of
the smallness of the electromagnetic coupling constant, for weak fields. Thus we
shall assume that there is a relation of the form

e
J=— T (3.1)
m

mat.

where T3 is identified as the matter part of the momentum density. We require
that 7§ becomes the complete energy-momentum tensor as the electromagnetic
field strength approaches zero. We also require, naturally, that it be gauge
invariant.

Given the discussion of the previous section, it is not difficult to construct
effective Lagrangians embodying (3.1). Indeed, it is more or less obvious that the
correct procedure must be simply to replace ordinary by gauge covariant
derivatives in the Lagrangians derived there. In fact this is correct, but two
subtleties arise that ought to be mentioned:

i) The canonical momentum density (2.4) is not gauge invariant. Neither is the
corresponding density for the electromagnetic field:

pemean — _ 9L o (3.2)
” 63,4, :

The reason for this is simply that the canonical density generates translations.
Under a translation of the spatial coordinates, x* — x* + a*, one has naively

¢—~>¢+a,d,é 3.3)

A,—~ A,+2a,0,4,, (3.4)
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and the differences that appear on the right-hand side are not gauge invariant. To
repair this situation, we employ our freedom to supplement the naive translation
with a suitable gauge transformation

¢ —>¢—¢ (3.5)
A~ A,+d,f (3.6)

Making the choice
f=—aA, 3.7

we find that (3.5), (3.6) are replaced by the manifestly covariant equations

¢ —=o¢+aD,e (3.8)
A, A,+a,F,, (3.9)

where D is the covariant derivative and F the field strength. The generators of the
modified spatial translations are then the gauge invariant forms

g = -2 pe——2Lp (3.10)
0f dao(b id) §D0¢ i¢a .
oL oL
em F, = F,. (.11)

T 68,4, " OF,

It is in terms of this form of 75 that we require (3.1).

Similar procedures, of course, apply to the complex scalar field.
i1) After replacement of ordinary by gauge covariant derivatives, the linear term
dy® — Dy¢ ceases to be a total derivative. Thus it would appear that this term,
which is universally ignored, contributes to the equations of motion. However, a
neutralizing uniform background contributes

AL = —peA, (3.12)

to the Lagrangian. The effect of such a background is precisely to undo the
passage from ordinary to covariant derivative in the linear term, and thus to
restore it to its previous inconsequential status.

Now we turn to a discussion of the London Hall effect, that is, London’s
prediction that when a current flows in a superconductor, an electric potential
develops across it. One interpretation of the effect is that equilibrium requires
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that the electrochemical potential should be constant in a superconductor. When
current is flowing the chemical potential is not constant, and an electrostatic
potential develops to compensate for it.

Our discussion will be entirely confined to the vortex-free, non-dissipative
Meissner regime.

The London Hall potential is quadratic in the current, consistent with time-
reversal symmetry, since a time-reversal transformation reverses the current but
not the potential. In view of the link between magnetic field and current for a
superconductor in the Meissner regime, we may also say that the London
potential is jointly proportional to the current and magnetic field (thus making
the connection with the ordinary Hall effect), or quadratic in the magnetic field.

We shall first derive the most important equation heuristically, and then justify
it with more careful arguments. It is simplest to begin with the expression (2.8) for
the charge density, modified to include the coupling to electromagnetism and
with the constant piece cancelled off by the uniform background:

1 1
Jo= Dyd— D, 2). 3.13
0 pe(mv2 0 2m2u2( ¢) (3.13)

It is plausible, and will be argued quantitatively below, that in ordinary
circumstances, for quasistatic phenomena, J, = 0 to a good approximation. This
simply reflects that Coulomb repulsion dominates the energetics. Assuming it for
the moment, we have

1
Do¢ =~ (Dig)". (3.14)
m

Generally in considering the electrodynamics of (simply connected) supercon-
ductors one works in “London gauge™ ¢ = 0; that this really is a gauge choice fol-
lows from (3.5). Making this choice, and further using the approximate
expression J;, ~ — pe/m D,¢ for the current we find immediately from (3.14) a
relation between electric potential and current:

m

4= 2p%e?

J2. (3.15)

This is the essence of the London Hall effect.

Equation (3.15) appears rather peculiar, because it refers explicitly to the
gauge-dependent quantity 4,. Of course this is not a contradiction, because (3.14)
was derived in a particular gauge; but it makes it incumbent on us to discuss its
precise physical meaning. The sort of experiment one might do to test (3.15) is to
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put capacitor plates close to but not in contact with two locations in the
superconducting sample where different amounts of supercurrent flow, and then
to measure the potential difference across these plates by monitoring the charge
flow induced in the exterior circuit as the supercurrent flow varies. To the extent
that the superconductor may be treated quasistatically, we should be able to find
a solution for the current flow in it such that all the fields are static, and in parti-
cular 3¢ = 0and 8,4, = 0. The first of these equalities justifies the passage from
(3.14) to (3.15); the second allows us to interpret the difference between A4,
measured at two points within the superconductor as the integral of the electric
field along any path connecting them. Thus (3.15), despite its reference to gauge-
dependent quantities, has a clear (gauge invariant) observable meaning,.

Now we shall analyze a specific realization of the London Hall effect. Consider
a semi-infinite slab of superconductor occupying the half-space x > 0 and subject
to an external magnetic field in the z-direction of magnitude B at x = 0. We look
for a stationary solution in London gauge, taking as our ansafz that only 4oand 4,
are non-zero, and that these depend only on x. The Maxwell-London equations
may be derived by varying our effective Lagrangian, supplemented of course with
the standard Maxwell Lagrangian. The equations read:

2 3
14 _ pe  __pPe
_aon—'47t(mvao 2m202A},>, (3.16)
an pe* pe’ e
2 —_ — _ ——— 2
—0id, = = ( — A=t (4= -4 ) ). (3.17)

To solve these we make the trial approximation suggested above:

e

A, 2mA§=o (3.18)
and solve (3.17); the result is
AB
A,= — e (3.19)
where
,  mc?
At = (3.20)
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is the square of the standard London penetration depth. (Notice that with our
conventions B is —c times the curl of 4.) The electric potential is given by

e B’
Ay = 5‘;’1‘7 e M, (3.21)

Notice that it penetrates only half the distance of the magnetic field.

Now we can check the accuracy of our assumed approximation (3.18).
Equation (3.16) is not precisely satisfied; however the ratio of the residual term to
the terms kept is

6§A0 172
——ez— = 4; << 1. (322)
47:'0 2A0

mv

The characteristic parameter of smallness for the terms neglected is essentially
the square of the ratio of the electric to magnetic penetration depths, or
equivalently the square of the ratio of the speed of sound to the speed of light.

For the electrostatic potential difference between the edge of the sample and
the interior we find

1
AA, = B~ (3.23)
4npe

Thus the London Hall effect gives a direct measure of the superfluid charge
density.

In this connection, let us note by way of contrast that the penetration depth is
sensitive to the ratio of superfluid charge density to carrier mass — indeed, only
this ratio appears as a parameter in the effective Lagrangian, if the higher-
gradient terms we have been emphasizing in this paper are neglected. Thus in the
truncated effective theory neither the density nor the mass have individual

_meaning. In his excellent book Tinkham'? quotes de Gennes as saying the
effective mass could be taken to be the mass of the sun! Consideration of the
London Hall effect together with the penetration depth, furnishes us with definite
independent observable meanings for the mass and the density.

Numerically, if we put p = 10%/em?, B = 50 gauss then we find A 4y = 1.2 X
1077 volts. These are representative values for the high-temperature supercon-
ductors. For conventional superconductors both p and B can be larger. Because of
the situation mentioned in the previous paragraph, there would seem to be
considerable interest in the experimental measurement of the London Hall effect,
especially in strong-coupling or exotic superconductors where the effective mass
may differ considerably from the bare electron mass.
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4. Applications to Anyon Superconductivity

In this section we shall consider two issues that arise in the phenomenology of
anyon superconductivity.

The most characteristic feature of the effective Lagrangian derived in Ref. 3 for
the description of the electrodynamics of anyon superconductors is the possible
appearance of terms that violate the discrete symmetries under spatial parity P
and time reversal 7" (while leaving PT as a good symmetry).

If for the moment we do not worry about enforcing (1.1), these terms may be
included into the effective Lagrangian by adding

AL = eaD, e, F,;+ epD,pe, Fy, (4.1)

to it. Here the indices i, j run over the two directions tangent to the plane in which
the anyons move. The Lagrangian in (4.1), and the currents and densities below,
are to be interpreted as two-dimensional — they describe the dynamics in a single
plane. Our «, f§ here are proportional to the a and b used in Ref. 3.

The additional terms modify the charge density by

AJy = e’ag,F,. (4.2)

Thus Egs. (3.14), (3.15) are modified to read

2

1 ) mv
Dy =?rr_z(Di¢) “ea‘p—E,-,-F,y, (4.3)
m mv?
Ay = 2 g, F, (4.4)
0 2p2€3 ijLije -

We see that in addition to the London Hall effect there is an additional
contribution to the potential of a new sort, let us call it the linear Hall effect, that
is linear in the field or current and therefore manifestly violates P and 7. The
magnitude of the coefficient « can be computed from the microscopic anyon
model of Refs. 3, 13; in the notation used there we find

__aC_( _1) 1 (4.5)
* 22 ") Ton )

for anyons with statistics 8 = n(1 — 1/#n).

In Ref. 3 the linear Hall effect was computed in the large n limit for a special
geometry, and the result was expressed in terms of the ratio of potential
difference to total current. In our opinion, Eq. (4.4) brings out the essential
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physics much more clearly — the linear Hall effect is a simple proportionality
between electric potential and magnetic field. Furthermore, the coefficient a, or
aCl2e? in the previous notation, is a quantity that can be related to very
fundamental properties of the angular momentum in anyon models (it is basically
the intrinsic orbital moment). One sign of this is that it has dimensions of an
action; indeed in (4.5) we find that no continuous material parameters occur. It
has been calculated, using arguments that appear to be exact, not only in the one-
species anyon model in the large » limit but also in the multi-species models more
likely to arise from underlying lattice systems.'>'*

Numerically, if we put B = 50 gauss as before, and take m equal to the electron
mass, we find Ad, = 2.9 X 1077 volts. Thus for these parameter values the linear
Hall effect is slightly larger than the London Hall effect.

Now let us consider the consequences of enforcing (1.1). For the term
proportional to «, the effect is minimal: we must replace Dy¢ by Dy — 1/2m
X (D;¢)’. This change has a small quantitative effect, but does not change the
overall picture significantly. The term proportional to §, on the other hand, is
simply forbidden — one cannot allow terms linear in D;¢. This accords with the
conclusion reached by the use of (essentially equivalent) physical arguments in
Refs. 3, 13.

5. Possible Extensions

There are several directions in which this work might be extended. Perhaps the
most obvious is to consider cases where there is more than one particle species
contributing to the momentum flow. An example that has received considerable
experimental attention is dilute solutions of *He ions in “He. The appropriate
generalization of (1.1) is simply

Ty = m JO+ m, J? (5.1)

where J and J*? are the particle number currents for the two species and m,, m,
are the corresponding masses. Building on Sec. 2, we introduce fields ¢ and ¢ to
represent the superfluid and the dressed ion quasiparticles respectively, and
assume that the currents appearing in (5.1) are associated with the symmetries

o> dta (5.2)
w_,ei(’?ﬂ+ﬂ)¢ (53)
1 is a parameter that, roughly speaking, tells us how many *He atoms are carried

in the ion quasiparticle cloud. Then (5.1) will constrain the effective Lagrangian
for ¢ and ¢ as follows:
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(5.4)

Now (5.4) is satisfied by the expression
1 2
9o ——(9:¢) (5.5)
2m

and is also satisfied by the expression
—i(nm; + my) (Y * 9oy — 3oy *¥) — b(BY*)(¥). (5.6)

An appropriate effective Lagrangian can be constructed using linear and
quadratic functions of these objects. The resulting Lagrangian will — as in our
discussion of one fluid models — inevitably contain non-minimal terms, which
appear with universal coefficients.

Thus we find that we do obtain constraints on the effective Lagrangian. If the
various coeflicients could be measured experimentally, for liquid helium
mixtures, they would among other things answer the rather intriguing question:
how many “He atoms are entrained in the *He quasiparticle cloud?

One might also consider “He itself, at finite temperatures, so that both
superfluid and rotons are present. Whereas in the previous case we had two
separate conserved particle number currents, in the present case there is just one,
which is (to first approximation) a linear combination of superfluid and roton
pieces.

A potentially rich but less straightforward extension would be to effective
Lagrangians containing more complicated fields, such as are used to describe the
superfluid phases of *He.

Returning to anyon superconductivity, it is interesting that the coefficient «,
which as we saw seems to be rather fundamental, can be characterized as the coef-
ficient of proportionality between the low energy and momentum limit of the
charge density and magnetic field:

Jo—> ae’e,F,. (5.7)

This relation, like (1.1), should carry over from the underlying microscopic
theory into the effective macroscopic theory.

Our considerations thus far have all concerned non-relativistic systems. Is it
possible to constrain relativistic systems by operator identities among symmetry
generators? Simple considerations of index-matching convince us that the



Rapid Commun.

in High I

918 M. Greiter, F. Wilczek & E. Witten

possibilities for linear relations are quite limited in standard four-dimensional
theories. One can imagine imposing relations like (1.1) in the context of Kaluza-
Klein theories, with the 0 in T}, replaced by some compactified direction (and i
running from 0 to 3). Finally, let us observe that the famous Sugawara ansatz

T =JJv (5.8)
is a relativistic constraint in the same family, but of course non-linear.
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