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1 Introduction

The purpose of this lecture is to show how group theory can be used to analyze model Hamiltonians
and also to construct such Hamiltonians based on symmetries. It should help to answer questions such
as: Why did the authors of paper X write down this weird Hamiltonian? Is the model used in paper
Y generic for systems of the relevant symmetry or does it contain hidden assumptions? How can I
construct a model Hamiltonian for some complicated lattice? Which symmetries of superconducting
states are possible for a certain system?

While the method is very general, we will restrict ourselves to

• electronic systems, both in the normal and the superconducting states, which are nonmagnetic at
least in the normal state, and

• point-group symmetries.

We will focus on practical procedures. Rigorous mathematical treatments can be found in many good
textbooks on group theory.

2 Mathematical basics

2.1 Groups

A group is a set G endowed with an operation, called group multiplication,{
G × G → G
a, b 7→ ab

(1)

with

• ab ∈ G ∀a, b ∈ G (closure),

• (ab)c = a(bc) ∀a, b, c ∈ G (associativity),

• there exists an identity element or unit element e ∈ G such that ea = ae = a ∀a ∈ G,

• for every a ∈ G, there exists an inverse element a−1 ∈ G such that aa−1 = a−1a = e.

It is common to denote both the group and the corresponding set by the same symbol.
A group is called Abelian if, in addition, ab = ba ∀a, b ∈ G (commutativity). The number of elements

(more correctly, the cardinality) of a group G is called its order |G|. The order can be finite, countably
infinite, or uncountably infinite. In this lecture, we are only dealing with finite groups.

2.2 Space groups and point groups

In physics, symmetries are mostly expressed in terms of the operations that leave an object invariant.
Such symmetry operations naturally form groups with the composition as the group multiplication. We
are here dealing with symmetries of electronic states in crystals. Spatial symmetry operations (R, T )
for lattices consist of a proper or improper rotation R and a translation T . A proper rotation takes
a right-handed trihedron1 (dreibein) into a right-handed trihedron, while an improper rotation takes
a right-handed trihedron into a left-handed trihedron. The simplest improper rotation is the spatial
inversion. Both the rotation part R and the translation part T can be trivial, i.e., the identity.

1We only consider three-dimensional lattices but the procedure easily carries over to other cases.

1



The space group of a crystal is the group of all operations (R, T ) that leave the crystal invariant.
The point group of a crystal is the group of all proper or improper rotations R that appear in the

space group. Note that the point group need not be a subgroup2 of the space group. It is a subgroup
only if one can choose the origin of the coordinate system in such a way that for any R in the point
group, (R, 0) is an element of the space group, where T = 0 denotes the translation by the null vector.3

There are symmetry operations that are not spatial, in particular the time reversal T . If we also
consider time reversal and its combination with spatial transformations for a space group, we obtain a
magnetic space group.4 Similarly, if we do the same for a point group, we obtain a magnetic point group.

If time reversal is itself (not just in combination with rotations) an element of a magnetic point
group, the group is called a gray group.5 In this case, the magnetic point group Gmag and the original
point group G are related by

Gmag = G ⊗ {e, T }, (2)

which just means that any element of G is contained in Gmag both by itself and combined with time
reversal. Hence, the orders of the groups satisfy |Gmag| = 2|G|.

2.3 Representations

A representation (“rep”) of a group G is usually defined as a mapping from G to a group of linear
transformations on a vector space. Since we are here only concerned with finite groups, such linear
transformations can be represented by matrices. We speak of a real (complex ) rep is the vector space is
over the field R (C), i.e., the matrices are all real (can be complex). The following general statements
hold for complex reps, unless stated otherwise.

We define a d -dimensional rep of a group G as a mapping

Γ :

{
G → GL(d,C)

a 7→ Γ(a)
, (3)

where, for a, b, c ∈ G,
ab = c ⇒ Γ(a) Γ(b) = Γ(c). (4)

More concisely, this can be written as

Γ(ab) = Γ(a) Γ(b) ∀a, b ∈ G, (5)

i.e., the matrix multiplication in the representation is consistent with the group multiplication.
Note that the inference in Eq. (4) only goes in one direction. If it works in both ways,

ab = c ⇔ Γ(a) Γ(b) = Γ(c), (6)

the rep is called faithful. In other words, a faithful rep is a one-to-one mapping between the original
group and a group of matrices.

As the opposite extreme, a mapping that maps every group element to unity,

Γ(a) = 1 ∀a ∈ G, (7)

is a one-dimensional rep, which obviously exists for any group. It is called the trivial representation.
The condition (4) or (5) remains invariant if we transform all matrices Γ(a) by

Γ(a) 7→ U Γ(a)U†, (8)

where U is an arbitrary but fixed unitary matrix. Hence, reps that only differ in such a transformation
are called equivalent.

2A subgroup is a subset that is also a group.
3If this holds, the space group is called symmorphic, otherwise nonsymmorphic.
4Magnetically ordered systems are the ones that can behave nontrivially under time reversal.
5This is the case for nonmagnetic systems but also for antiferromagnetic systems that are invariant under the combi-

nation of time reversal and a pure translation.
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A unitary rep is a rep made up of unitary matrices Γ(a). For any finite group, all reps are equivalent
to unitary reps. We can thus always assume the reps of crystallographic point groups to be unitary.

Magnetic groups contain the time reversal T , at least in combinations with other elements. We know
that time reversal is an antilinear operation on the Hilbert space since it involves a complex conjugation.
However, time reversal is not special as far as the group properties are concerned and thus does not
invalidate the general statements. In particular, the reps of the magnetic point group are unitary.

2.4 Irreducible representations

One can often simplify reps by a unitary transformation. For example, if all Γ(a) are unitary and
commute with each other they can be diagonalized simultaneously. More generally, it may be possible
to block diagonalize all Γ(a) simultaneously. If so, the transformed rep can be written as

a 7→ Γ(a) =

 Γ1(a) 0
0 Γ2(a)

. . .

 , (9)

where Γ1(a), Γ2(a), . . . are unitary. The blocks Γ1(a) etc. do not mix under matrix multiplication. This
implies that Γ1(a), Γ2(a), . . . each are reps by themselves.

A rep is called reducible if all matrices can be block-diagonalized simultaneously by a unitary trans-
formation. Otherwise it is called irreducible. Irreducible representations are called “irreps.”

The irreps of a group are unique up to unitary tranformations. There are many theorems concerning
irreps. For example, all one-dimensional reps are irreducible. A more interesting theorem states the
following: let Γn be the irreps of a finite group G and let their dimensions be dn. Then∑

n

d2n = |G|. (10)

In practice, one rarely has to find the irreps of a group from scratch. In particular, the irreps of point
groups are all tabulated. It would of course be possible to give representative matrices Γ(a) for all a ∈ G
for all irreps. Such tables would contain irrelevant information, though, since the irreps are only unique
up to unitary transformations. It turns out to be sufficient for the unique characterization of irreps to
list the traces Tr Γ(a) of matrices Γ(a) and not the full matrices, and to do so only for specific a that
represent whole classes. Loosely speaking, classes contain point-group operations that are related by
symmetries, such as all threefold rotations of a cubic point group.6 The traces

χ(a) = Tr Γ(a) (11)

are called characters of the matrices Γ(a). Many character tables and additional information for all
crystallographic point groups can be found online. A comprehensive set of pages is [1], another useful
set is [2]. A lot of material on magnetic and nonmagnetic space and point groups can be found in [3].

It is easy to see that the group identity must be represented by a unit matrix, Γ(e) = 1. This implies
that its character χ(e) = d is the dimension of the rep.

For some groups, it makes a difference whether we consider complex (as implied so far) or real irreps.
Since reality is an additional condition, a rep can be irreducible as a real rep but reducible as a complex
rep. For certain crystallographic point groups, a two-dimensional real irrep can be reduced into two
one-dimensional complex irreps. For crystallographic point groups, all characters for real irreps must
be integers. For point groups with two-dimensional real irreps that decompose into one-dimensional
complex irreps, the resulting characters are generally complex numbers with unit modulus. Whether
real or complex irreps should be considered depends on the physical question. For our purposes, real
irreps are likely more useful but we will not discuss examples for which this makes a difference.

6See books on group theory for rigorous discussions of the concept of classes.
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2.5 Basis functions

Let G be a group of coordinate transformations in D-dimensional Euclidean space,7 for example a point
group. We are concerned with the case of D = 3. The coordinate transformations act analogously in
real and momentum space; we will write them for momentum space since this will be needed later. d
linearly independent functions cn(k), n = 1, . . . , d, are called basis functions of a d -dimensional irrep Γ
of G if all a ∈ G act as

cn(k)
a7−→

d∑
m=1

Γ(a)mn cm(k). (12)

Note the order of indices of Γ(a). One says that cn(k) transforms as the n-th row of the irrep Γ.
To make Eq. (12) more explicit: a coordinate transformation a in D dimensions is expressed by

multiplying the momentum k by a proper or improper rotation matrix, which is an orthogonal matrix
R−1a ∈ O(D). The definition with the inverse matrix is a convention. For example, for the identity
operation, R−1a = 1, while for spatial inversion, R−1a = −1.8 This means that the cn(k) must satisfy

cn(k)
a7−→ cn(R−1a k) =

d∑
m=1

Γ(a)mn cm(k). (13)

Basis functions of irreps are tabulated. It is important to realize that the basis functions are not at all
unique. The tables typically show the lowest-order polynomial (the “simplest”) functions that form a
basis. Basis functions are extremely useful to get intuition for how the matrices Γ(a) act.

Example: we will only consider the point group Oh. The following table shows the lowest-order
polynomial basis functions of the irreps of the nonmagnetic point group Oh. The first column contains
the Mulliken notation for the irrep and the second the minimum order of polynomial basis functions.9

7Do not mix up the dimension D of coordinate space with the dimension d of some rep.
8The matrices R−1

a form a D-dimensional rep of the group G, which is generally reducible.
9For the specialists: since we are dealing with fermionic systems, we should, in principle, consider double groups. The

point is that a (2s+ 1)-component spinor ψ(k) changes sign under rotation by 360◦ if s is half integer. For spin 1/2 this
is easily seen for the example of a rotation about the z -axis: the rotation matrix for a rotation angle of φ reads

Uz(φ) = e−i
σ3
2
φ.

This gives

Uz(2π) = e−iπσ3 =

(
e−iπ 0

0 e+iπ

)
=

(
−1 0
0 −1

)
= −1.

Since rotation by 360◦ is certainly a symmetry (and for Oh is the square of the two-fold rotations about the principal axes,
which are symmetries) it must be an element of the point group. However, it is not the identity element but rather its
square is the identity element. This effectively doubles the order of the group, hence the term double groups. It also leads
to the appearance of additional, so-called extra irreps. However, for our purposes of the classification of Hamiltonians,
the extra irreps are not relevant, essentially because the second-quantized Hamiltonian consists of even-order products of
fermionic creation and annihilation operators and is in this sense bosonic.
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irrep order basis functions

A1g 0 1
A2g 6 k4x (k2y − k2z) + k4y (k2z − k2x) + k4z (k2x − k2y)

Eg 2 k2x − k2y
1√
3

(2k2z − k2x − k2y)

T1g 4 kykz (k2y − k2z)
kzkx (k2z − k2x)
kxky (k2x − k2y)

T2g 2 kykz
kzkx
kxky

A1u 9 kxkykz
[
k4x (k2y − k2z) + k4y (k2z − k2x) + k4z (k2x − k2y)

]
A2u 3 kxkykz

Eu 5
1√
3
kxkykz (2k2z − k2x − k2y)

−kxkykz (k2x − k2y)

T1u 1 kx
ky
kz

T2u 3 kx (k2y − k2z)
ky (k2z − k2x)
kz (k2x − k2y)

We see that in the Mulliken notation the letter used for the irrep shows its dimension. A and B
(which does not occur for Oh) stand for one dimension, E for two, and T for three. Morevoer, the
subscript g or u indicates whether the irrep maps the inversion operation onto 1 (even irreps, g for
“gerade”) or −1 (odd irreps, u for “ungerade”). The basis functions are then also even or odd under
inversion, respectively. This distinction of course only exists if the point group contains the inversion.

A few additional remarks on tabulated basis functions are in order:

• Often the basis function for the trivial irrep A1g is given as k2x+k2y +k2z . This is certainly a correct
basis function but not the lowest-order one.

• Often, only basis functions of first and second order are included, giving the incorrect impression
that no basis functions exist for some of the irreps.

• For higher-dimensional (i.e., not one-dimensional) irreps, nonsingular transformations of the set of
basis functions lead to other permissible sets of basis functions. While the basis shown in tables
is typically of a certain form (for example, we choose k2x − k2y as a basis function for Eg, and not
k2y − k2z), there is no universally accepted order of the basis functions.

• Normalization factors (including minus signs) are often not included or random.

To continue with the example, we see that for all four three-dimensional irreps, the three basis functions
are related in a simple way: they are mapped onto each other cyclically under the threefold rotation
C3xyz about the (111) direction. For the two-dimensional irreps, this is evidently not the case. For Eg,
the mapping reads

k2x − k2y
C3xyz7−→ k2y − k2z = −1

2
(k2x − k2y)−

√
3

2

1√
3

(2k2z − k2x − k2y), (14)

1√
3

(2k2z − k2x − k2y)
C3xyz7−→ 1√

3
(2k2x − k2y − k2z) =

√
3

2
(k2x − k2y)− 1

2

1√
3

(2k2z − k2x − k2y). (15)
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From Eq. (12), we see that the representation matrix of C3xyz must be

ΓEg (C3xyz) =

 −1

2

√
3

2

−
√

3

2
−1

2

 . (16)

As an example showing how to find reasonable basis functions for new irreps, we consider the irrep
Eu. It makes sense to use the same representation matrices for proper rotations for Eu as for Eg
since the only essential difference is that the inversion is represented by −1 instead of 1, which can be
incorporated by multiplying all representation matrices for improper rotations by −1. Thus we take, in
particular, ΓEu(C3xyz) = ΓEg (C3xyz). Possible basis functions for Eu can be inferred from the product
relation Eg ⊗A2u = Eu. It implies that basis functions for Eu can be constructed by multiplying basis
functions for Eg by the basis function kxkykz of A2u. However, the two functions naively obtained by
this procedure do not transform correctly under point-group operations if we want to keep the same
matrices for proper rotations. For example, the function kxkykz (k2x − k2y) is even under the fourfold
rotation C4z about the z -axis, not odd like k2x − k2y. Hence, we take the first basis function of Eu to be

(1/
√

3) kxkykz (2k2z − k2x − k2y) since it is odd under C4z. Applying C3xyz to it, we get

1√
3
kxkykz (2k2z−k2x−k2y)

C3xyz7−→ 1√
3
kykzkx (2k2x−k2y−k2z) = −1

2

1√
3
kxkykz (2k2z−k2x−k2y)−

√
3

2
c
(2)
Eu

(k),

(17)

where c
(2)
Eu

(k) is the as yet unknown second basis function. This is trivially solved to give

c
(2)
Eu

(k) = −kxkykz (k2x − k2y). (18)

These basis functions have been included in the above table.
For gray magnetic point groups Gmag = G ⊗ {e, T }, time-reversal symmetry behaves similarly to

inversion symmetry as far as the irreps are concerned. The number of irreps is twice that for the
structural group G: for any irrep Γ of G, there are two irreps Γ+ and Γ− of Gmag, where the subscript
± indicates whether the irrep and thus its basis functions are even (+) or odd (−) under time reversal.
Hence, the irreps of the magnetic point group Oh are A1g+, A1g−, A2g+, A2g−, . . .

Since momenta k are odd under both inversion and time reversal any basis functions constructed out
of their components can only be either even or odd under both these operations. This means that g+
and u− irreps have momentum-space basis functions, whereas g− and u+ irreps do not.10

2.6 Irreducible tensor operators

There is an extensive theory for irreducible tensor operators but we only need a small part of it. The
main idea is to construct operators on the Hilbert space (or matrices that represent them in a specific
basis) that transform like basis functions. Let G be a point group in D-dimensional space. A symmetry
operation a ∈ G is associated, on the one hand, with a rotation matrix R−1a and, on the other, with a
unitary operator Ua on the Hilbert space. Ua encodes, for example, the rotation of spins.

A set of d linearly independent operators Qn(k), n = 1, . . . , d, are called irreducible tensor operators
of a d -dimensional irrep Γ of G if all a ∈ G act as

Qn(k)
a7−→ UaQn(R−1a k)U†a =

d∑
m=1

Γ(a)mnQm(k). (19)

Note the similarity to Eq. (12). One says that Qn(k) transforms as the n-th row of the irrep Γ.
The concept can be extended to antiunitary transformations, such as time reversal. Time reversal

inverts momenta (but not positions) and on the Hilbert space acts as an antiunitary operator

T = UT K, (20)

10This is different for real-space basis functions since position vectors r are odd under inversion but even under time
reversal. Hence, only the g+ and u+ irreps have real-space basis functions.
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where UT is a unitary operator and K is complex conjugation.11 Under time reversal, irreducible tensor
operators must transform according to

Qn(k)
T7−→ UT Q

∗
n(−k)U†T =

d∑
m=1

Γ(T )mnQm(k). (21)

In the irreps of gray magnetic point groups, T is represented by either 1 (for “+” irreps) or −1 (for “−”
irreps) so that we simply get

UT Q
∗
n(−k)U†T = ±Qn(k). (22)

The most important point to remember is that the concept of irreducible tensor operators is essentially
a generalization of the one of basis functions to operator- (or matrix-) valued functions. The simplest
application is to angular-momentum operators (or matrices). Let J = (Jx, Jy, Jz) be a spin operator of
length j. Its components Ji can be written as (2j + 1) × (2j + 1) matrices. Then the proper rotation
about an axis along the unit vector n̂ by an angle φ is expressed by the unitary SU(2j + 1) matrix

Un̂,φ = e−i n̂·Jφ. (23)

Improper rotations can be written as the product of the inversion and a proper rotation. Inversion leaves
spins invariant so that the unitary matrices describing improper rotations are identical to those for the
corresponding proper ones. This takes care of all operations in the structural point group.

Furthermore, the spin should change sign under time reversal, i.e.,

Ji
T7−→ UT J

∗
i U
†
T = −Ji, (24)

where i = x, y, z. How should UT be chosen? One can show that it is always possible to choose two of
the spin components as real matrices. The third then must be imaginary since the spin commutation
relation contains a factor i. By convention, Jy is imaginary. Then a suitable choice for UT is

UT = eiJyπ. (25)

UT itself obviously describes a rotation about the y-axis by 180◦. Hence, we obtain

Jx
T7−→ eiJyπ J∗x e

−iJyπ = eiJyπ Jx e
−iJyπ = −Jx (26)

and analogously for Jz, while

Jy
T7−→ eiJyπ J∗y e

−iJyπ = eiJyπ (−Jy) e−iJyπ = −Jy eiJyπ e−iJyπ = −Jy. (27)

We see that all three components are inverted.12 For spins of length 1/2, we thus find the simple form

UT = ei
σ2
2 π = σ0 cos

π

2
+ iσ2 sin

π

2
= iσ2, (28)

where σ0 = 12 is the 2 × 2 unit matrix and we have used that σ2
i = σ0 and Taylor expansion of the

matrix exponential.
We can now try to find irreducible tensor operators expressed in terms of angular-momentum opera-

tors for the various irreps and list them together with the basis functions. This is often done in tables of
basis functions (the spin operators are usually called “rotations” and denoted by Ri), but only to linear
order. However, more complicated, in particular polynomial, functions of spin operators are possible.
Such irreducible tensor operators can be called spin basis functions.

11Any antiunitary operator can be written like this. Complex conjugation is a basis-dependent operation. It is defined
as leaving all basis vectors invariant and complex conjugating all coefficients.

12This shows that although UT seems to break rotation symmetry by treating Jy differently from the other components,
it actually does not.
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It makes sense to consider only hermitian spin basis functions because we eventually want to expand
Hamiltonians. Hermitian operators can sometimes but not always be constructed by symmetrization.
For example, JxJy is generally not hermitian but (JxJy + JyJx)/2 is. However, for spins of length 1/2,
this is zero since the Pauli matrices anticommute. Thus, symmetrization does not produce a spin basis
function of order two and indeed such functions do not exist for spin 1/2. To understand this more
generally, recall that spins of length j are represented by (2j + 1) × (2j + 1) matrices. The vector
space over R of hermitian (2j + 1)× (2j + 1) matrices has dimension (2j + 1)2. The number of linearly
independent hermitian functions of spin operators of order n is 2n+ 1.13 Since

2j∑
n=0

(2n+ 1) = (2j + 1)2 (29)

it is plausible and indeed true that one can form a basis of the vector space from polynomial functions
of order up to 2j. This means that higher powers can be expressed as linear combinations of lower
ones. Hence, independent spin basis functions only exist up to the order 2j. If we try to construct
basis functions of higher order we either get zero or we can express them as linear combinations of basis
functions of lower order, which may belong to different irreps.

Since spins are always even under inversion (pseudovectors!) and odd under time reversal spin basis
functions for g+ irreps must be even in spin and for g− irreps must be odd in spin. For u+ and u−
irreps, spin basis functions do not exist.

In practice, spin basis functions can be constructed from momentum basis functions by the following
steps:

• Replace ki by Ji.

• Disregard functions of order higher than 2j.

• Symmetrize if required to make the matrix functions hermitian. Remove them if they become zero
or if they are already accounted for, possibly by spin basis functions of different irreps.

• Shift spin basis functions of odd order from the u− to the corresponding g− irrep.

For illustration, the following table shows the momentum and spin basis functions for the four T1 irreps
of the magnetic point group Oh, where “–” means that no basis functions exist.

irrep momentum basis functions spin basis functions

T1g+ kykz (k2y − k2z)
JyJz (J2

y − J2
z ) + (J2

y − J2
z ) JzJy

2

kzkx (k2z − k2x)
JzJx (J2

z − J2
x) + (J2

z − J2
x) JxJz

2

kxky (k2x − k2y)
JxJy (J2

x − J2
y ) + (J2

x − J2
y ) JyJx

2
T1g− – Jx

– Jy
– Jz

T1u+ – –
– –
– –

T1u− kx –
ky –
kz –

The T1g+ spin basis functions are of order four and are thus appropriate for spins of length 2 or
larger. What happens if we try to construct these for shorter spins?

13There is a single order-zero function, 1, three first-order functions, Jx, Jy , Jz , etc.
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• For j = 1/2, the entries all vanish since σ2
i = 1 and thus do not produce any basis functions.

• For j = 1, we find by explicit evaluation that, for example,

JxJy (J2
x − J2

y ) + (J2
x − J2

y ) JyJx

2
= −JxJy + JyJx

2
, (30)

which is a spin basis function belonging to T2g.

• For j = 3/2, the result is the same as for j = 1.

We also note that combinations of momentum and spin can generate additional basis functions also
for irreps that do not have pure momentum or spin basis functions. For example, by replacing a single
ki by a Ji in the T1g+ basis functions, we obtain, after symmetrization,

kyJz + Jykz
2

(k2y − k2z) (31)

etc. Since the transformation under all improper rotations changes sign compared to the momentum
basis functions these combined basis functions belong to T1u+.

3 Application to the normal-state Hamiltonian

In this section, we first outline the procedure for constructing a general Hamiltonian for the (nonmag-
netic) normal state and then illustrate it for two examples. Since we are interested in a periodic lattice
we treat the Hamiltonian in momentum space. The second-quantized Hamiltonian reads

ĤN =
∑
k

c†kHN (k) ck, (32)

where

ck =

 ck,1
...

ck,n

 (33)

is an n-component spinor operator. i = 1, . . . , n counts the possible states of internal degrees of freedom
such as spin, orbital, and basis site. The first-quantized Hamiltonian HN (k) is an n× n matrix.

The procedure is as follows:

• Find point group G of the crystal. It will turn out to be useful to work with the magnetic point
group Gmag = G ⊗ {e, T }. Obtain a list of the irreps of Gmag.

• Construct a basis {hν} of hermitian n×n matrices in the space of the internal degrees of freedom
so that the hν transform as irreducible tensor operators of the magnetic point group Gmag. We
will call the hν basis matrices. Often, not all irreps occur.

• Obtain a list of the irreps that possess momentum basis functions. It is also useful to obtain lowest-
order polynomial basis functions for those irreps but these must be understood as placeholders for
arbitrary basis functions with the same symmetry properties under point-group operations.

• Expand the Hamiltonian into the previously constructed basis,

HN (k) =
∑
ν

cν(k)hν . (34)

The Hamiltonian and thus every term in the expansion must be invariant under Gmag, i.e., it must
transform as an irreducible tensor operator belonging to the trivial irrep Atriv. This requires the
form factors cν(k) to transform as basis functions of the same irrep to which hν belongs. Moreover,
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for multidimensional irreps, the cν(k) must transform as the basis functions that correspond to the
irreducible tensor operators hν (same component of the multiplet) and all of them must have the
same amplitude if the basis functions and tensor operators are properly normalized.14 This relies
on the fact that the reduction of the product of any irrep with itself contains the trivial irrep. If
there is no basis function cν(k) for the irrep of some hν , this term does not occur in Eq. (34).

3.1 Example: two s-orbitals

As an example, we consider a material with the cubic point group Oh and two unrelated fully symmetric
(s-like) orbitals, with spin, per lattice site. This is arguably the simplest example beyond a single
orbital per site. While it is not very realistic for real materials—we would essentially need atoms with
two different s-orbitals dominating the band structure close to the Fermi energy—it shows that even
such a simple model is not trivial.

The Hilbert space of the internal degrees of freedom is four-dimensional (orbital times spin) and it is
useful to write all 4× 4 matrices as Kronecker products A⊗B, where A and B are 2× 2 matrices acting
on the orbital and the spin degree of freedom, respectively.15 Full symmetry of the orbitals means that
they transform according to the trivial irrep A1g. In particular, spatial inversion is described by the
unitary matrix

P = 14 = σ0 ⊗ σ0, (35)

where σ0 = 12, since inversion affects neither the fully symmetric orbitals nor the spin.
The unitary part of the time-reversal operator is

UT = σ0 ⊗ iσ2 (36)

since the orbitals are invariant under time reversal and the spin is inverted, see Sec. 2.6.
For this case, one can easily see that the 16 hermitian matrices obtained as Kronecker products

σi ⊗ σj , i, j = 0, 1, 2, 3, are irreducible tensor operators of irreps.16 The resulting basis matrices are
listed in the following table, together with their corresponding irreps.

14For example, the irrep Eg+ of the point group Oh for a model with total angular momentum of length j ≥ 1 involves

the basis matrices h4 = (J2
x − J2

y )/
√

3 and h5 = (2J2
z − J2

x − J2
y )/3. The corresponding form factors are, to leading order

is powers of momentum, c4(k) = cEg (k2x − k2y)/
√

3 and c5(k) = cEg (2k2z − k2x − k2y)/3. Their linear combination reads

c4(k)h4 + c5(k)h5 =
1

9
(4k2xJ

2
x + 4k2yJ

2
y + 4k2zJ

2
z − 2k2xJ

2
y − 2k2xJ

2
z − 2k2yJ

2
x − 2k2yJ

2
z − 2k2zJ

2
x − 2k2zJ

2
y )

=
2

3
(k2xJ

2
x + k2yJ

2
y + k2zJ

2
z )−

2

9
(k2x + k2y + k2z) j(j + 1) 1,

which has the full A1g+ symmetry.
15The Kronecker product is, in block form,

A⊗B =

(
A11B A12B
A21B A22B

)
,

where

A =

(
A11 A12

A21 A22

)
.

One can say that the first factor describes the outer structure, while the second factor describes the inner structure.
16For more complicated cases, such Kronecker products are not necessarily basis matrices of irreps. However, since the

Kronecker products form a basis it is always possible to construct the basis matrices of irreps as their linear combinations.
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hν irrep

σ0 ⊗ σ0 A1g+

σ0 ⊗ σ1
σ0 ⊗ σ2 T1g−
σ0 ⊗ σ3
σ1 ⊗ σ0 A1g+

σ1 ⊗ σ1
σ1 ⊗ σ2 T1g−
σ1 ⊗ σ3
σ2 ⊗ σ0 A1g−
σ2 ⊗ σ1
σ2 ⊗ σ2 T1g+
σ2 ⊗ σ3
σ3 ⊗ σ0 A1g+

σ3 ⊗ σ1
σ3 ⊗ σ2 T1g−
σ3 ⊗ σ3

To understand the table, first consider the structural point group. Since the orbitals transform
trivially under all point-group elements, the corresponding unitary matrices are all of the form σ0 ⊗ u,
where u is a 2× 2 unitary matrix. In other words, the spin alone determines the irrep of the structural
point group. But then σ0 obviously transforms trivially, i.e., according to A1g, whereas the spin σ =
(σ1, σ2, σ3) is a pseudovector, which transforms according to T1g. Regarding time reversal, σ0 in the
spin sector is even, whereas σ is odd. However, the time-reversal operator T is antilinear so that the
imaginary Pauli matrix σ2 in the orbital sector gives another sign change.

The point to note here is that although the orbital degree of freedom appears to be a trivial spectator,
it does lead to the appearance of additional irreps. Without it, i.e., for a single-orbital model, we could
only have A1g+ (with basis matrix σ0) and T1g− (with basis matrices σ1, σ2, σ3).

Next, we need momentum basis functions. The lowest-order basis functions can be found in the table
in Sec. 2.5. In the normal-state Hamiltonian HN (k) =

∑
ν cν(k)hν , all terms must transform according

to A1g+, thus cν(k) and hν must transform in the same way. Since cν(k) only exist for g+ and u−
irreps, HN (k) can only contain hν belonging to g+ or u− irreps. A look at the table above shows that
these are the six matrices (with their irreps)

h0 ≡ σ0 ⊗ σ0 A1g+, (37)

h1 ≡ σ1 ⊗ σ0 A1g+, (38)

h2 ≡ σ3 ⊗ σ0 A1g+, (39)

h3 ≡ σ2 ⊗ σ1 T1g+, (40)

h4 ≡ σ2 ⊗ σ2 T1g+, (41)

h5 ≡ σ2 ⊗ σ3 T1g+. (42)

We note in passing that these matrices have interesting commutation relations, namely hµhν = ±hνhµ
with the sign given in the following table. These relations lead to a very simple analytical form of the
eigenvalues: εk = c0(k)± [

∑5
ν=1 c

2
ν(k)]1/2.

h0 h1 h2 h3 h4 h5
h0 + + + + + +
h1 + + − − − −
h2 + − + − − −
h3 + − − + − −
h4 + − − − + −
h5 + − − − − +
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Equations (37)–(42) show that HN (k) contains two types of terms, generated by A1g+ ⊗ A1g+ and
by T1g+ ⊗ T1g+, respectively. The first part reads

H
A1g

N (k) = c00(k)σ0 ⊗ σ0 + c10(k)σ1 ⊗ σ0 + c30(k)σ3 ⊗ σ0, (43)

where c00, c10, and c30 are basis functions of A1g+. While the simplest allowed basis functions would
simply be cµ0(k) = 1, µ = 0, 1, 3, for a real material they will be more complicated and distinct—the
point group does not imply any relation between them. However, they must all transform according to
A1g+, i.e., be invariant under all elements of the magnetic point group. They are further constrained
by being periodic under translations by reciprocal-lattice vectors. However, if the low-energy states are
restricted to the vicinity of the Γ point k = 0 the functions can be expanded in k.17 The leading terms
read (see [1] to understand the origin of these terms)

cµ0(k) = c
(0)
µ0 + c

(2)
µ0 (k2x + k2y + k2z) + c

(4)
µ0 (k4x + k4y + k4z) + c

(6)
µ0 k

2
xk

2
yk

2
z + . . . (44)

for µ = 0, 1, 3.18 We can interpret the three terms physically. To that end, note that

σ0 + σ3 = 2

(
1 0
0 0

)
, σ0 − σ3 = 2

(
0 0
0 1

)
, (45)

i.e., the sum of the first and third terms refers only to the first orbital, whereas their difference refers

only to the second orbital. Hence, c
(0)
00 ± c

(0)
30 is twice the onsite energy of orbital one (two) and the

corresponding sums (differences) of higher order terms describe hopping between like orbitals. The

chemical potential is the same for all orbitals and spin directions and thus must be included in c
(0)
00 . The

second term, with σ1⊗ σ0, is off-diagonal in orbital space. It describes hopping between unlike orbitals.

For a reasonable definition of local orbitals, the onsite energy should be diagonal, i.e., c
(0)
10 = 0.

For the second type, from T1g+⊗T1g+, we observe that there is a single triplet of matrices belonging
to T1g+, namely σ2 ⊗ σ1, σ2 ⊗ σ2, and σ2 ⊗ σ3. To obtain an invariant Hamiltonian, they must each be
multiplied by the corresponding momentum basis function and have the same coefficient, which gives

H
T1g

N (k) = cT1g1(k)σ2 ⊗ σ1 + cT1g2(k)σ2 ⊗ σ2 + cT1g3(k)σ2 ⊗ σ3 ≡ cT1g
(k) · σ2 ⊗ σ, (46)

with the expansion

cT1g1(k) = c
(4)
T1g

kykz (k2y − k2z) + c
(6)
T1g

kykz (k4y − k4z) + . . . , (47)

cT1g2(k) = c
(4)
T1g

kzkx (k2z − k2x) + c
(6)
T1g

kzkx (k4z − k4x) + . . . , (48)

cT1g3(k) = c
(4)
T1g

kxky (k2x − k2y) + c
(6)
T1g

kxky (k4x − k4y) + . . . , (49)

see [1].19 Physically, since these terms are nontrivial in spin space and necessarily depend on momentum
they describe spin-orbit coupling. More specifically, the spin-orbit coupling here is linear in spin (and
thus potentially strong). It is also nontrivial in orbital space (σ2). This is necessary—for a single-orbital
model, the only allowed basis matrix in HN (k) is σ0 since σ1, σ2, σ3 belong to T1g−, which does not
have momentum basis functions.

The full normal-state Hamiltonian is HN (k) = H
A1g

N (k) + H
T1g

N (k). The advantage of the group-
theoretical approach is that one can be certain that no terms have been missed.

17This works analogously if the relevant states are close to other high-symmetry points in the Brillouin zone. In that
case, one has to use the little group of this point instead of the full point group.

18If we need to respect translation symmetry, the simplest form depends on the Bravais lattice. For the simple cubic
lattice with lattice constant set to 1, we have

cµ0(k) = εµ0 + ε′µ0 (cos kx + cos ky + cos kz) + . . .

19On the simple cubic lattice, we have

cT1g1(k) = εT1g sin ky sin kz (cos ky − cos kz) + . . . ,

cT1g2(k) = εT1g
sin kz sin kx (cos kz − cos kx) + . . . ,

cT1g3(k) = εT1g sin kx sin ky (cos kx − cos ky) + . . . .
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3.2 Example: two orbitals of opposite parity

As a second example, we consider the point group Oh but now with two orbitals of opposite parity at
each lattice site. The even and the odd orbital both must map onto itself multiplied by a phase factor
under any element of the point group. The even orbital thus must transform as a basis function of a
one-dimensional g irrep. Oh has two such irreps, A1g and A2g. The trivial case is A1g, i.e., the orbital
has the full symmetry of an s-orbital.20 The odd orbital must transform as a basis function of a one-
dimensional u irrep, i.e., of A1u or A2u. A2u is the simpler case since it has the lowest-order real-space
basis function xyz of order 3. Hence, a single odd-parity orbital can be realized by an fxyz orbital.21

We consider the case that the even orbital transforms according to A1g (s-orbital) and the odd
according to A2u (fxyz-orbital). Now the inversion or parity operator is nontrivial:

P = σ3 ⊗ σ0 (50)

since the fxyz-orbital is odd under inversion. Morever, it is odd under all fourfold rotations (irrep A2u!)
but even under threefold rotations. The unitary part of the time-reversal operator is

UT = σ0 ⊗ iσ2 (51)

like in the first example. The basis matrices can be written as Kronecker products, which transform
according to the irreps as follows. To obtain this table, the nontrivial transformation properties of the
fxyz-orbital under rotations has been taken into account.

hν irrep

σ0 ⊗ σ0 A1g+

σ0 ⊗ σ1
σ0 ⊗ σ2 T1g−
σ0 ⊗ σ3
σ1 ⊗ σ0 A2u+

σ1 ⊗ σ1
σ1 ⊗ σ2 T2u−
σ1 ⊗ σ3
σ2 ⊗ σ0 A2u−
σ2 ⊗ σ1
σ2 ⊗ σ2 T2u+
σ2 ⊗ σ3
σ3 ⊗ σ0 A1g+

σ3 ⊗ σ1
σ3 ⊗ σ2 T1g−
σ3 ⊗ σ3

Compared to the example of two s-orbitals, the Pauli matrices σ1 and σ2 for the orbital degree of
freedom are now odd under inversion so that u irreps occur.

The momentum basis functions cν(k) in HN (k) =
∑
ν cν(k)hν must transform in the same way as

the matrices hν . However, momentum basis functions only exist for g+ and u− irreps and thus only the
hν belonging to these irreps can occur. These are

h0 ≡ σ0 ⊗ σ0 A1g+, (52)

h1 ≡ σ3 ⊗ σ0 A1g+, (53)

h2 ≡ σ2 ⊗ σ0 A2u−, (54)

h3 ≡ σ1 ⊗ σ1 T2u−, (55)

20For A2g , the lowest order of polynomial basis functions is 6, see the table in Sec. 2.5. This would be an i-orbital,
which is irrelevant for atoms in the ground state.

21For A1u, the lowest order of polynomial basis functions is 9, obviously irrelevant.
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h4 ≡ σ1 ⊗ σ2 T2u−, (56)

h5 ≡ σ1 ⊗ σ3 T2u−. (57)

The normal-state Hamiltonian reads

HN (k) = c00(k)σ0 ⊗ σ0 + c30(k)σ3 ⊗ σ0 + c20(k)σ2 ⊗ σ0 + cT2
(k) · σ1 ⊗ σ, (58)

where the leading terms are

c00(k) = c
(0)
00 + c

(2)
00 (k2x + k2y + k2z) + . . . , (59)

c30(k) = c
(0)
30 + c

(2)
30 (k2x + k2y + k2z) + . . . , (60)

c20(k) = c
(3)
20 kxkykz + . . . , (61)

cT21(k) = c
(3)
T2
kx (k2y − k2z) + . . . , (62)

cT22(k) = c
(3)
T2
ky (k2z − k2x) + . . . , (63)

cT23(k) = c
(3)
T2
kz (k2x − k2y) + . . . (64)

Terms appear that are odd in momentum although the system is inversion symmetric. These terms are
allowed and thus generically present since they multiply orbital matrices that are also odd under parity.

4 Application to the superconducting-state Hamiltonian

In this section, we discuss the construction of Hamiltonians for superconducting states, based on point-
group symmetries. We are here dealing with effectively noninteracting Hamiltonians, i.e., any inter-
actions are incorporated at the mean-field level. In the case of superconductivity, this is conveniently
expressed in the Bogoliubov-de Gennes-Nambu formalism. We will restrict ourselves to crystals with
inversion symmetry so that superconducting states can be classified according to their parity.

4.1 Bogoliubov-de Gennes Hamiltonian

The second-quantized Hamiltonian reads

Ĥ =
1

2

∑
k

Ψ†kH(k) Ψk, (65)

with the Nambu spinor

Ψk =



ck,1
...

ck,n
c†−k,1

...

c†−k,n


, (66)

which now has 2n components. The first-quantized Bogoliubov-de Gennes Hamiltonian reads

H(k) =

(
HN (k) ∆(k)

∆†(k) −HT
N (−k)

)
. (67)

For ∆(k) = 0, the remaining upper left and lower right blocks give identical contributions up to a
constant. This leads to double counting, which is corrected for by the factor of 1/2 in Eq. (65). The off-
diagonal blocks evidently couple two creation or two annihilation operators and are thus characteristic
for superconductivity. The quasiparticle dispersion is obtained by diagonalizing H(k). This also double
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counts degrees of freedom—for each eigenenergy at momentum k there is another one with opposite sign
at momentum −k, which does not refer to a distinct state. One can view only half of the eigenenergies,
larger or equal to zero, as physical since the quasiparticles are excitations above the BCS ground state
and thus should have non-negative energies.

The off-diagonal blocks are restricted by fermionic antisymmetry.22 The contribution of the upper
right block to the second-quantized Hamiltonian reads, in components,

1

2

∑
k,ij

c†k,i ∆(k)ij c
†
−k,j =

1

2

∑
k,ij

c†−k,i ∆(−k)ij c
†
k,j = −1

2

∑
k,ij

c†k,j ∆(−k)ij c
†
−k,i. (68)

This can be summarized as
1

2
c†k ∆(k) c†−k = −1

2
c†k ∆T (−k) c†−k. (69)

Hence, the anticommutation of fermionic operators requires that ∆(k) = −∆T (−k) or

∆T (k) = −∆(−k). (70)

We now turn to the transformation properties of ∆(k) under point-group operations. Consider
an arbitrary structural point-group operation a described by the three-dimensional proper or improper
rotation matrix R−1a and the unitary n×nmatrix Ua. Any momentum-dependent n×nmatrix transforms

as M(k)
a7−→ UaM(R−1a k)U†a . Of course, HN (k) is such a matrix:

HN (k)
a7−→ UaHN (R−1a k)U†a . (71)

Thus implies that the lower right block of Bogoliubov-de Gennes Hamiltonian H(k) must transform as

−HT
N (−k)

a7−→ −[UaHN (−R−1a k)U†a ]T = −U∗a HT
N (−R−1a k)UTa . (72)

But this requires H(k) to transform as

H(k)
a7−→
(
Ua 0
0 U∗a

)
H(R−1a k)

(
U†a 0
0 UTa

)
≡ UaH(R−1a k)U†a. (73)

This relation shows how unitary n× n matrices have to be lifted to 2n-dimensional Nambu space.
The result has interesting consequences for ∆(k): making the upper right block of Eq. (73) explicit,

we find
∆(k)

a7−→ Ua ∆(R−1a k)UTa . (74)

Hence, ∆(k) does not transform like a matrix under point-group operations. Consequently, a-priori we
do not know how to apply representation theory to ∆(k).

To make progress, we derive an auxiliary result. Any magnetic point group is a subgroup of O(3)⊗
{1, T }. Time reversal T commutes with all elements of O(3) and thus with all elements of the structural
point group. Now consider an arbitrary structural point-group operation a described by the unitary n×n
matrix Ua. Then the inverse operation a−1 is represented by U−1a = U†a . The commutation relation

T U†a − U†aT = UTKU†a − U†aUTK = 0 (75)

implies
UTKU†a = U†aUTK (76)

and thus
U†aUT = UTKU†aK = UTU

T
a . (77)

We apply this relation to the transformation properties of ∆(k). Let us write the pairing matrix as

∆(k) = D(k)UT , (78)

22One can also argue starting from charge-conjugation symmetry.
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which defines D(k). We then find the transformation

D(k)UT
a7−→ UaD(R−1a k)UT U

T
a

Eq. (77)
= UaD(R−1a k)U†a UT (79)

so that
D(k)

a7−→ UaD(R−1a k)U†a . (80)

Hence, D(k) does transform like a matrix under structural point-group operations, unlike ∆(k).
Analogously, one finds that under time reversal, D(k) transforms like

D(k)
T7−→ UT D

∗(−k)U†T , (81)

i.e., also like a matrix, whereas ∆(k) transforms as ∆(k) 7→ UT ∆∗(−k)UTT . It is therefore reasonable
to expand D(k) in the basis of matrices (irreducible tensor operators) hν .23

Above, we have seen that fermionic antisymmetry implies ∆T (k) = −∆(−k). This is equivalent to
UTT D

T (k) = −D(−k)UT and thus

UTT D
T (k)U†T = −D(−k). (82)

We have noted above that for fermionic systems T 2 = −1. This relation can be rewritten as

UTKUTK = UTU
∗
T = −1. (83)

Since U∗T is unitary, we conclude that

UT = −(U∗T )−1 = −(U∗T )† = −UTT . (84)

Hence, UT is antisymmetric. Equation (82) then yields −UT DT (k)U†T = −D(−k) and thus24

UT D
T (−k)U†T = D(k). (85)

We can now expand the matrix D(k) into all n2 hermitian basis matrices,

D(k) =

n2∑
ν=1

dν(k)hν . (86)

The coefficients dν(k) are generally complex since D(k) is not hermitian. Condition (85) must be satisfied
for each term separately because of the linear independence of the hν :

dν(−k)UTh
T
ν U
†
T = dν(k)hν . (87)

Since the hν are hermitian, this is equivalent to

UT dν(−k)h∗ν U
†
T = dν(k)hν . (88)

This is similar to time-reversal symmetry but not quite the same—time reversal would also replace
dν(−k) by d∗ν(−k) on the left-hand side. However, Eq. (88) stipulates that each contribution to D(k)
must be time-reversal symmetric if its amplitude is real. In other words, time-reversal symmetry can
only be broken by having amplitudes that have a nontrivial phase in the complex plane. Hence, only
time-reversal-even (+) irreps occur in the expansion.

We transform both sides of Eq. (88) with the unitary matrix P for spatial inversion:

dν(−k)PUT h
∗
ν U
†
TP
† = dν(k)PhνP

†. (89)

23Since ∆(k) = D(k)UT , ∆(k) itself is expanded into the basis matrices γν = hνUT .
24Note that DT is not generally equal to D∗ since D need not be hermitian.
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We have seen that generally some of the basis matrices are even under the combined PT transformation
(g+ or u− irreps) and some are odd (g− or u+ irreps). Hence, we obtain ±dν(−k)hν = dν(k)PhνP

†

and thus
P dν(−k)hν P

† = ±dν(k)hν . (90)

The sign denotes the transformation property under PT . The left-hand side of the equation contains the
full inversion transformation, including the inversion of the momentum. We have thus found that the
PT -even (PT -odd) basis matrices hν describe even-parity (odd-parity) superconductivity. The PT -even
basis matrices are exactly the same ones that also appear in the expansion of HN (k). Thus the same
hν appear in HN (k) and D(k) for even-parity superconductivity.

4.2 Construction procedure

Next, we extend the procedure to the construction of superconducting states. Here, we have much greater
freedom than in constructing HN (k) since the superconducting state may break symmetries contained
in Gmag. After the construction of HN (k) as discussed above, the procedure continues as follows:

• Write the pairing matrix as ∆(k) = D(k)UT and expand D(k) in the basis of matrices hν . For
even-parity superconductivity, only the hν belonging to g+ or u− irreps need to be included (the
same as for the normal-state Hamiltonian). Conversely, for odd-parity superconductivity, only the
hν belonging to g− or u+ irreps need to be included. Write the expansion as

D(k) =
∑
ν

∆ν dν(k)hν ≡
∑
ν

[∆1
ν + i∆2

ν ] dν(k)hν , (91)

where the complex pairing amplitudes ∆ν have been separated from the real and suitably normal-
ized structure factors dν(k).

• Consider all products of momentum basis functions fµ(k) and basis matrices hν . Any product
transforms according to the—generally reducible—product representation of the irreps of fµ(k)
and hν . Reduce them into irreps by standard methods and obtain momentum-dependent matrix
basis functions of these irreps as linear combinations of products fµ(k)hν .

• Exclude all “−” irreps since they violate fermionic antisymmetry.

• Group together all pairing states transforming according to the same component of the same irrep
since they will generically coexist.

4.3 Example: two s-orbitals

We return to the system with the point group Oh and two unrelated s-orbitals per lattice site. The
possible irreps of pairing states are obtained by reducing all products of the irreps of momentum basis
functions fµ(k) and of basis matrices hν . The former are A1g+, A2g+, Eg+, T1g+, T2g+, A1u−, A2u−,
Eu−, T1u−, T2u−, while the latter are A1g+, T1g+, A1g−, T1g−, see the table of all 16 basis matrices in
Sec. 3.1. The reduction of the products is shown in the following table.

form factor: pairing matrix: irrep
irrep A1g+ T1g+ A1g− T1g−

A1g+ A1g+ T1g+ ◦ ◦
A2g+ A2g+ T2g+ ◦ ◦
Eg+ Eg+ T1g+ ⊕ T2g+ ◦ ◦
T1g+ T1g+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ ◦ ◦
T2g+ T2g+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ ◦ ◦
A1u− ◦ ◦ A1u+ T1u+
A2u− ◦ ◦ A2u+ T2u+
Eu− ◦ ◦ Eu+ T1u+ ⊕ T2u+
T1u− ◦ ◦ T1u+ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+
T2u− ◦ ◦ T2u+ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+
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A few remarks are in order:

• Irreps that are odd under time reversal cannot occur since they violate fermionic antisymmetry.
The reduction of product reps that are odd under time reversal is therefore not interesting here
and is replaced by “◦” in the table.

• The normal-state Hamiltonian HN (k) can, and generically does, contain all combinations that
transform according to A1g+, as discussed in Sec. 3.1. These combinations are set in bold face.

• The first row of the table refers to a momentum-space form factor belonging to A1g+. Only this
irrep is compatible with the form factor being constant in momentum, which means purely local
in real space. Hence, purely local pairing can only lead to the symmetries appearing in the first
row of the table, here A1g+ and T1g+. Note that T1g+ is only possible because the model contains
two orbitals; in a single-orbital model, we would only find local A1g+ pairing.

• The g irreps (upper left block of the table) describe even-parity superconductivity. As noted above,
the same basis matrices appear as in the normal-state Hamiltonian, here the ones transforming
according toA1g+ and T1g+. The u irreps (lower right block) describe odd-parity superconductivity.

• Time-reversal-symmetric pairing states generically have line nodes, the number of which is given
by the minimum order of basis functions of the irrep, see the table in Sec. 2.5.

Which pairing state is actually realized is a question of energetics and thus cannot be answered by
our symmetry analysis alone. Instead, one should solve the BCS gap equation, at least as the first
approximation. However, a few general statements can be made. If the attractive pairing interaction
is dominantly local the superconducting state will have A1g+ or T1g+ symmetry. However, if the local
interaction is dominated by the repulsive Coulomb interaction pairing can only be driven by a nonlocal
attraction. Then the symmetries in the rows below the first are possible, which are all “+” irreps.

Generically, pairing states belonging to different irreps will have distinct critical temperatures Tc and,
upon lowering the temperature starting from the normal state, the pairing symmetry with the highest
Tc will be realized. Typically, all contributions with the same symmetry will appear simultaneously.25

It is possible to have pairing states that contain more than one irrep, then D(k) is a linear combination
of contributions from the different irreps. However, this generically requires multiple phases transitions.

For multidimensional irreps, it is possible that only a single component or that several components
appear. In the latter case, there may be a phase difference between them, i.e., Eg+ pairing could have
the amplitudes (∆, i∆) for the two components. We have noted above that the only way to break
time-reversal symmetry is to have complex amplitudes. Hence, this is most naturally realized for pairing
symmetries with multidimensional irreps and several amplitudes with nontrivial relative phases.

We here only discuss one possible pairing state, namely Eg+. The previous table shows that this
pairing is impossible for purely local pairing. Conversely, it is unaffected by an arbitrarily strong local
repulsion. Eg+ occurs in three places in the table: (a) Eg+⊗A1g+, (b) T1g+⊗T1g+, and (c) T2g+⊗T1g+.
Since Eg+ is a two-dimensional irrep, the pairing matrix

D(k) = D1(k) +D2(k) (92)

is the sum of two terms that belong to the two components of the Eg+ doublet.
(a) Eg+⊗A1g+ is trivial in orbital and spin space. The three A1g+ matrices are each combined with

a doublet of Eg+ form factors, giving

D1
EgA1g

(k) = ∆1
00f

1
00(k)σ0 ⊗ σ0 + ∆1

10f
1
10(k)σ1 ⊗ σ0 + ∆1

30f
1
30(k)σ3 ⊗ σ0, (93)

D2
EgA1g

(k) = ∆2
00f

2
00(k)σ0 ⊗ σ0 + ∆2

10f
2
10(k)σ1 ⊗ σ0 + ∆2

30f
2
30(k)σ3 ⊗ σ0. (94)

The leading terms of the form factors are

f1m0(k) = (k2x − k2y) + f
(4)
m0 (k4x − k4y) + . . . , (95)

25In a Ginzburg-Landau description, they are coupled by bilinear terms.
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f2m0(k) =
1√
3

(2k2z − k2x − k2y) +
f
(4)
m0√
3

(2k4z − k4x − k4y) + . . . , (96)

where the coefficients of the second-order terms have been set to unity as a choice of normalization.
The higher-order coefficients are then generally different from each other. These contributions can be
described as d -wave (second order in momentum) spin-singlet pairing.

(b) The reducible representation T1g+ ⊗ T1g+ has nine matrix basis functions fµ(k)σ2 ⊗ σν , µ, ν =
1, 2, 3, where fµ(k) are momentum basis functions of T1g+. Without loss in generality, we take f1(k),
f2(k), f3(k) to transform like σ2 ⊗ σ1, σ2 ⊗ σ2, σ2 ⊗ σ3, respectively (corresponding basis functions).
The leading terms read

f1T1g
(k) = kykz (k2y − k2z) + . . . , (97)

f2T1g
(k) = kzkx (k2z − k2x) + . . . , (98)

f3T1g
(k) = kxky (k2x − k2y) + . . . , (99)

where the common coefficient has been set to unity as normalization. The reduction T1g+ ⊗ T1g+ =
A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ is telling us that a doublet of matrix-valued basis functions of Eg+ can be
constructed as linear combinations of the fµ(k)σ2 ⊗ σν . To find the correct linear combinations, we
have to analyze how they transform under point-group operations.26 The solution is

F 1
T1gT1g

(k) = f1T1g
(k)σ2 ⊗ σ1 − f2T1g

(k)σ2 ⊗ σ2, (100)

F 2
T1gT1g

(k) =
1√
3

[
2f3T1g

(k)σ2 ⊗ σ3 − f1T1g
(k)σ2 ⊗ σ1 − f2T1g

(k)σ2 ⊗ σ2
]
. (101)

These matrix basis functions are no longer simply the product of a scalar momentum-dependent form
factor and a momentum-independent matrix. Their contributions to the pairing matrix are

D1
T1gT1g

(k) = ∆1
T1gT1g

F 1
T1gT1g

(k), (102)

D2
T1gT1g

(k) = ∆2
T1gT1g

F 2
T1gT1g

(k). (103)

two The leading terms are

D1
T1gT1g

(k) = ∆1
T1gT1g

[
kykz (k2y − k2z)σ2 ⊗ σ1 − kzkx (k2z − k2x)σ2 ⊗ σ2

]
+ . . . , (104)

D2
T1gT1g

(k) =
∆2
T1gT1g√

3

[
2kxky (k2x − k2y)σ2 ⊗ σ3 − kykz (k2y − k2z)σ2 ⊗ σ1 − kzkx (k2z − k2x)σ2 ⊗ σ2

]
+ . . .

(105)

This describes g-wave (order 4) spin-triplet pairing, made possible by nontrivial orbital content.
(c) The analysis for T2g+⊗T1g+ = A2g+⊕Eg+⊕T1g+⊕T2g+ is analogous, except that the momentum

basis functions belonging to T2g+ are simpler:

f1T2g
(k) = kykz + . . . , (106)

f2T2g
(k) = kzkx + . . . , (107)

f3T2g
(k) = kxky + . . . , (108)

where the common coefficient has been set to unity. We have the matrix basis functions

F 1
T2gT1g

(k) =
1√
3

[
2f3T2g

(k)σ2 ⊗ σ3 − f1T2g
(k)σ2 ⊗ σ1 − f2T2g

(k)σ2 ⊗ σ2
]
, (109)

F 2
T2gT1g

(k) = −f1T2g
(k)σ2 ⊗ σ1 + f2T2g

(k)σ2 ⊗ σ2. (110)

26It is sufficient to consider the transformation under a small subset of the point group, namely under its generators,
which generate all group elements by multiplication.
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Note that the forms of the expressions for the two components are interchanged compared to case (b)
and there is an additional minus sign.27 The contribution to the pairing matrix is

D1
T2gT1g

(k) = ∆1
T2gT1g

F 1
T2gT1g

(k), (111)

D2
T2gT1g

(k) = ∆2
T2gT1g

F 2
T2gT1g

(k), (112)

or explicitly to leading order:

D1
T2gT1g

(k) =
∆1
T2gT1g√

3
[2kxky σ2 ⊗ σ3 − kykz σ2 ⊗ σ1 − kzkx σ2 ⊗ σ2] + . . . , (113)

D2
T2gT1g

(k) = ∆2
T2gT1g

[−kykz σ2 ⊗ σ1 + kzkx σ2 ⊗ σ2] + . . . (114)

This is d -wave spin-triplet pairing, again made possible by nontrivial orbital content.
As an application, we consider the nodal structure of a time-reversal-symmetric Eg+ pairing state

that only involves the first component of the doublet. This will be called a (1, 0) state. One can show
that in the limit of small pairing amplitudes (weak coupling), nodes appear on the normal-state Fermi
surface wherever

c0(k)∆0d0(k)−
5∑

ν=1

cν(k)∆νdν(k) = 0 (115)

holds, where HN (k) =
∑5
ν=0 cν(k)hν and D(k) =

∑5
ν=0 ∆νdν(k)hν . This simple condition follows from

the simple commutation relations of the six matrices hν , see Sec. 3.1, and does not persists for more
complicated models. For illustration, we only write down the leading-order contribution to each term,

0 = c
(0)
00 ∆1

00 (k2x − k2y)− c(0)10 ∆1
10(k2x − k2y)− c(0)30 ∆1

30(k2x − k2y)

− c(4)T1g

(
∆1
T1gT1g

[
k2yk

2
z(k2y − k2z)2 − k2zk2x(k2z − k2x)2

]
+

∆1
T2gT1g√

3

[
2k2xk

2
y(k2x − k2y)− k2yk2z(k2y − k2z)− k2zk2x(k2z − k2x)

])
=

[(
c
(0)
00 ∆1

00 − c
(0)
10 ∆1

10 − c
(0)
30 ∆1

30

)
+ c

(4)
T1g

∆1
T1gT1g

k2z (k4x + k4y + k4z + k2xk
2
y − 2k2xk

2
z − 2k2yk

2
z)

+
c
(4)
T1g

∆1
T2gT1g√
3

(k4z − 2k2xk
2
y − k2xk2z − k2yk2z)

]
(k2x − k2y). (116)

We see that the general Eg+ pairing state has two line nodes at ky = ±kx. These nodes are fixed to
the diagonal mirror planes and therefore cannot be shifted by the various contributions. In addition, if
the amplitudes ∆1

T1gT1g
or ∆1

T2gT1g
are sufficiently large the expression in square brackets can develop

zeros in momentum space. This can lead to additional “accidental” nodes. These nodes are not pinned
to high-symmetry planes.

Continuing this analysis, we find the following results, which we just state here:

• The (1, i) state, which breaks time-reversal symmetry, generically has point nodes in the (111) and
equivalent directions, in the weak-coupling limit.28

• Beyond the weak-coupling limit, the point nodes “inflate” into Bogoliubov Fermi surfaces. These
remain attached to the normal-state surface at the location of the weak-coupling point nodes.

27To determine which matrix basis functions is which, their behavior under twofold rotation about (110) has been
examined. Furthermore, to find the relative factor, the behavior under threefold rotation about (111) has been considered.

28Condition (115) has to hold for both the real and the imaginary part of the pairing amplitudes. The point nodes then
appear at the intersection of line nodes from the real and imaginary parts [the hermitian and antihermitian parts of D(k)].
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4.4 Example: two orbitals of opposite parity

As a second example, we briefly consider the previously studied model with one A1g (s) orbital and one
A2u (fxyz) orbital per lattice site. Again, the possible irreps of pairing states are obtained by reducing
all products of the irreps of momentum basis functions fµ(k) and of basis matrices hν . The former are
A1g+, A2g+, Eg+, T1g+, T2g+, A1u−, A2u−, Eu−, T1u−, T2u−, while the latter are A1g+, A2u+, T1g+,
T2u+, A1g−, A2u−, T1g−, T2u− see the table of all 16 basis matrices in Sec. 3.2. The reduction of the
products is shown in the following two tables showing g+ form factors and u− form factors, respectively.
All products not given in the tables are excluded since they violate fermionic antisymmetry.

form factor: pairing matrix: irrep
irrep A1g+ A2u+ T1g+ T2u+

A1g+ A1g+ A2u+ T1g+ T2u+
A2g+ A2g+ A1u+ T2g+ T1u+
Eg+ Eg+ Eu+ T1g+ ⊕ T2g+ T1u+ ⊕ T2u+
T1g+ T1g+ T2u+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+
T2g+ T2g+ T1u+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+

form factor: pairing matrix: irrep
irrep A1g− A2u− T1g− T2u−

A1u− A1u+ A2g+ T1u+ T2g+
A2u− A2u+ A1g+ T2u+ T1g+
Eu− Eu+ Eg+ T1u+ ⊕ T2u+ T1g+ ⊕ T2g+
T1u− T1u+ T2g+ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+
T2u− T2u+ T1g+ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+

Two nontrivial results can be read off from the tables: First, two odd-parity pairing states (A2u and
T2u, both corresponding to f -wave symmetry) now appear even for purely local pairing. This is possible
since the odd parity is carried by the orbital makeup of the condensate. Second, pairing with full A1g

symmetry now generically has a contribution from T2u− ⊗ T2u−. This pairing is odd in orbital, even in
spin (triplet), and odd in momentum.

References

[1] G. Katzer, Character Tables for Point Groups used in Chemistry,
http://gernot-katzers-spice-pages.com/character_tables/index.html.

[2] Character tables for chemically important point groups,
http://symmetry.jacobs-university.de/.

[3] D. B. Litvin, Magnetic Group Tables,
https://www.iucr.org/publ/978-0-9553602-2-0.

21

http://gernot-katzers-spice-pages.com/character_tables/index.html
http://symmetry.jacobs-university.de/
https://www.iucr.org/publ/978-0-9553602-2-0

	Introduction
	Mathematical basics
	Groups
	Space groups and point groups
	Representations
	Irreducible representations
	Basis functions
	Irreducible tensor operators

	Application to the normal-state Hamiltonian
	Example: two s-orbitals
	Example: two orbitals of opposite parity

	Application to the superconducting-state Hamiltonian
	Bogoliubov-de Gennes Hamiltonian
	Construction procedure
	Example: two s-orbitals
	Example: two orbitals of opposite parity


